Given an array arr[] of size N and a positive integer K, the task is to find the sum of all array elements which are prime factors of K.
Examples:
Input: arr[] = {1, 2, 3, 5, 6, 7, 15}, K = 35
Output: 12
Explanation: From the given array, 5 and 7 are prime factors of 35. Therefore, required sum = 5 + 7 = 12.
Input: arr[] = {1, 3, 5, 7}, K = 42
Output: 10
Explanation: From the given array, 3 and 7 are prime factors of 42. Therefore, required sum = 3 + 7 = 10.
Approach: The idea is to traverse the array and for each array element, check if it is a prime factor of K or not. Add those elements to the sum, for which the condition satisfies. Follow the steps below to solve the problem:
- Initialize a variable, say sum, to store the required sum.
- Traverse the given array, and for each array element, perform the following operations:
- After complete traversal of the array, print the value of the sum as the result.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
bool isPrime( int n)
{
if (n <= 1)
return false ;
if (n <= 3)
return true ;
if (n % 2 == 0 || n % 3 == 0)
return false ;
for ( int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false ;
return true ;
}
void primeFactorSum( int arr[], int n, int k)
{
int sum = 0;
for ( int i = 0; i < n; i++) {
if (k % arr[i] == 0 && isPrime(arr[i])) {
sum = sum + arr[i];
}
}
cout << sum;
}
int main()
{
int arr[] = { 1, 2, 3, 5, 6, 7, 15 };
int N = sizeof (arr) / sizeof (arr[0]);
int K = 35;
primeFactorSum(arr, N, K);
return 0;
}
|
Java
import java.io.*;
import java.lang.*;
import java.util.*;
class GFG
{
static boolean isPrime( int n)
{
if (n <= 1 )
return false ;
if (n <= 3 )
return true ;
if (n % 2 == 0 || n % 3 == 0 )
return false ;
for ( int i = 5 ; i * i <= n; i = i + 6 )
if (n % i == 0 || n % (i + 2 ) == 0 )
return false ;
return true ;
}
static void primeFactorSum( int arr[], int n, int k)
{
int sum = 0 ;
for ( int i = 0 ; i < n; i++) {
if (k % arr[i] == 0 && isPrime(arr[i]))
{
sum = sum + arr[i];
}
}
System.out.println(sum);
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 5 , 6 , 7 , 15 };
int N = arr.length;
int K = 35 ;
primeFactorSum(arr, N, K);
}
}
|
Python3
def isPrime(n):
if (n < = 1 ):
return False
if (n < = 3 ):
return True
if (n % 2 = = 0 or n % 3 = = 0 ):
return False
i = 5
while (i * i < = n ):
if (n % i = = 0 or n % (i + 2 ) = = 0 ):
return False
i = i + 6
return True
def primeFactorSum(arr, n, k):
sum = 0
for i in range (n):
if (k % arr[i] = = 0 and isPrime(arr[i])):
sum = sum + arr[i]
print ( sum )
arr = [ 1 , 2 , 3 , 5 , 6 , 7 , 15 ]
N = len (arr)
K = 35
primeFactorSum(arr, N, K)
|
C#
using System;
class GFG
{
static bool isPrime( int n)
{
if (n <= 1)
return false ;
if (n <= 3)
return true ;
if (n % 2 == 0 || n % 3 == 0)
return false ;
for ( int i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false ;
return true ;
}
static void primeFactorSum( int []arr, int n, int k)
{
int sum = 0;
for ( int i = 0; i < n; i++) {
if (k % arr[i] == 0 && isPrime(arr[i]))
{
sum = sum + arr[i];
}
}
Console.Write(sum);
}
public static void Main( string [] args)
{
int []arr = { 1, 2, 3, 5, 6, 7, 15 };
int N = arr.Length;
int K = 35;
primeFactorSum(arr, N, K);
}
}
|
Javascript
<script>
function isPrime(n)
{
if (n <= 1)
return false ;
if (n <= 3)
return true ;
if (n % 2 == 0 || n % 3 == 0)
return false ;
var i;
for (i = 5; i * i <= n; i = i + 6)
if (n % i == 0 || n % (i + 2) == 0)
return false ;
return true ;
}
function primeFactorSum(arr, n, k)
{
var sum = 0;
var i;
for (i = 0; i < n; i++) {
if (k % arr[i] == 0 && isPrime(arr[i])) {
sum = sum + arr[i];
}
}
document.write(sum);
}
var arr = [1, 2, 3, 5, 6, 7, 15]
var N = arr.length;
var K = 35;
primeFactorSum(arr, N, K);
</script>
|
Time Complexity: O(N*?X), where X is the largest element in the array
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Apr, 2021
Like Article
Save Article