Sum of array elements which are multiples of a given number
Given an array arr[] consisting of positive integers and an integer N, the task is to find the sum of all array elements which are multiples of N
Examples:
Input: arr[] = {1, 2, 3, 5, 6}, N = 3
Output: 9
Explanation: From the given array, 3 and 6 are multiples of 3. Therefore, sum = 3 + 6 = 9.Input: arr[] = {1, 2, 3, 5, 7, 11, 13}, N = 5
Output: 5
Approach: The idea is to traverse the array and for each array element, check if it is a multiple of N or not and add those elements. Follow the steps below to solve the problem:
- Initialize a variable, say sum, to store the required sum.
- Traverse the given array and for each array element, perform the following operations.
- Check whether the array element is a multiple of N or not.
- If the element is a multiple of N, then add the element to sum.
- Finally, print the value of sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the sum of array // elements which are multiples of N void mulsum( int arr[], int n, int N) { // Stores the sum int sum = 0; // Traverse the given array for ( int i = 0; i < n; i++) { // If current element // is a multiple of N if (arr[i] % N == 0) { sum = sum + arr[i]; } } // Print total sum cout << sum; } // Driver Code int main() { // Given arr[] int arr[] = { 1, 2, 3, 5, 6 }; int n = sizeof (arr) / sizeof (arr[0]); int N = 3; mulsum(arr, n, N); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG{ // Function to find the sum of array // elements which are multiples of N static void mulsum( int arr[], int n, int N) { // Stores the sum int sum = 0 ; // Traverse the given array for ( int i = 0 ; i < n; i++) { // If current element // is a multiple of N if (arr[i] % N == 0 ) { sum = sum + arr[i]; } } // Print total sum System.out.println(sum); } // Driver Code public static void main(String[] args) { // Given arr[] int arr[] = { 1 , 2 , 3 , 5 , 6 }; int n = arr.length; int N = 3 ; mulsum(arr, n, N); } } // This code is contributed by jana_sayantan. |
Python
# Python3 program for the above approach # Function to find the sum of array # elements which are multiples of N def mulsum(arr, n, N): # Stores the sum sums = 0 # Traverse the array for i in range ( 0 , n): if arr[i] % N = = 0 : sums = sums + arr[i] # Print total sum print (sums) # Driver Code if __name__ = = "__main__" : # Given arr[] arr = [ 1 , 2 , 3 , 5 , 6 ] n = len (arr) N = 3 # Function call mulsum(arr, n, N) |
C#
// C# program for the above approach using System; public class GFG { // Function to find the sum of array // elements which are multiples of N static void mulsum( int [] arr, int n, int N) { // Stores the sum int sum = 0; // Traverse the given array for ( int i = 0; i < n; i++) { // If current element // is a multiple of N if (arr[i] % N == 0) { sum = sum + arr[i]; } } // Print total sum Console.Write(sum); } // Driver Code static public void Main () { // Given arr[] int [] arr = { 1, 2, 3, 5, 6 }; int n = arr.Length; int N = 3; mulsum(arr, n, N); } } // This code is contributed by Dharanendra L V. |
Javascript
<script> // JavaScript program for the above approach // Function to find the sum of array // elements which are multiples of N function mulsum(arr, n, N) { // Stores the sum var sum = 0; // Traverse the given array for ( var i = 0; i < n; i++) { // If current element // is a multiple of N if (arr[i] % N == 0) { sum = sum + arr[i]; } } // Print total sum document.write(sum); } // Driver Code // Given arr[] var arr = [ 1, 2, 3, 5, 6 ]; var n = arr.length; var N = 3; mulsum(arr, n, N); // This code is contributed by rdtank </script> |
9
Time Complexity: O(N) since one traversal of the array is required to complete all operations hence the overall time required by the algorithm is linear
Auxiliary Space: O(1) since no extra array is used so the space taken by the algorithm is constant
Please Login to comment...