Sum of array elements possible by appending arr[i] / K to the end of the array K times for array elements divisible by K
Given an array arr[] consisting of N integers and an integer K, the task is to find the sum of the array elements possible by traversing the array and adding arr[i] / K, K number of times at the end of the array, if arr[i] is divisible by K. Otherwise, stop the traversal.
Examples:
Input: arr[] = {4, 6, 8, 2}, K = 2
Output: 44
Explanation:
The following operations are performed:
- For arr[0](= 4): arr[0](= 4) is divisible by 2, therefore append 4/2 = 2, 2 numbers of times at the end of the array. Now, the array modifies to {4, 6, 8, 2, 2, 2}.
- For arr[1](= 6): arr[1](= 6) is divisible by 2, therefore append 6/2 = 3, 2 number of times at the end of the array. Now, the array modifies to {4, 6, 8, 2, 2, 2, 3, 3}.
- For arr[2](= 8): arr[2](= 8) is divisible by 2, therefore append 8/2 = 4, 2 number of times at the end of the array. Now, the array modifies to {4, 6, 8, 2, 2, 2, 3, 3, 4, 4}.
- For arr[3](= 2): arr[3](= 2) is divisible by 2, therefore append 2/2 = 1, 2 number of times at the end of the array. Now, the array modifies to {4, 6, 8, 2, 2, 2, 3, 3, 4, 4, 1, 1}.
- For arr[4](= 2): arr[4](= 2) is divisible by 2, therefore append 2/2 = 1, 2 number of times at the end of the array. Now, the array modifies to {4, 6, 8, 2, 2, 2, 3, 3, 4, 4, 1, 1, 1, 1}.
- For arr[5](= 2): arr[5](= 2) is divisible by 2, therefore append 2/2 = 1, 2 number of times at the end of the array. Now, the array modifies to {4, 6, 8, 2, 2, 2, 3, 3, 4, 4, 1, 1, 1, 1, 1, 1}.
After completing the above steps, the sum of the array elements is = 4 + 6 + 8 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 1 + 1 + 1 + 1 + 1 + 1 = 44.
Input: arr[] = {4, 6, 8, 9}, K = 2
Output: 45
Naive Approach: The simplest approach is to solve the given problem is to traverse the given array and add the value (arr[i]/K) K a number of times at the end of the array. After completing the above steps, print the sum of the array elements.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K int sum( int arr[], int N, int K) { // Stores the sum of the array int sum = 0; vector< long long > v; // Traverse the array arr[] for ( int i = 0; i < N; i++) { v.push_back(arr[i]); } // Traverse the vector for ( int i = 0; i < v.size(); i++) { // If v[i] is divisible by K if (v[i] % K == 0) { long long x = v[i] / K; // Iterate over the range // [0, K] for ( int j = 0; j < K; j++) { // Update v v.push_back(x); } } // Otherwise else break ; } // Traverse the vector v for ( int i = 0; i < v.size(); i++) sum = sum + v[i]; // Return the sum of the updated array return sum; } // Driver Code int main() { int arr[] = { 4, 6, 8, 2 }; int K = 2; int N = sizeof (arr) / sizeof (arr[0]); cout << sum(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K static int sum( int arr[], int N, int K) { // Stores the sum of the array int sum = 0 ; ArrayList<Integer> v = new ArrayList<>(); // Traverse the array arr[] for ( int i = 0 ; i < N; i++) { v.add(arr[i]); } // Traverse the vector for ( int i = 0 ; i < v.size(); i++) { // If v[i] is divisible by K if (v.get(i) % K == 0 ) { int x = v.get(i) / K; // Iterate over the range // [0, K] for ( int j = 0 ; j < K; j++) { // Update v v.add(x); } } // Otherwise else break ; } // Traverse the vector v for ( int i = 0 ; i < v.size(); i++) sum = sum + v.get(i); // Return the sum of the updated array return sum; } // Driver Code public static void main(String[] args) { int arr[] = { 4 , 6 , 8 , 2 }; int K = 2 ; int N = arr.length; System.out.println(sum(arr, N, K)); } } // This code is contributed by Kingash |
Python3
# Python3 program for the above approach # Function to calculate sum of array # elements after adding arr[i] / K # to the end of the array if arr[i] # is divisible by K def summ(arr, N, K): # Stores the sum of the array sum = 4 v = [i for i in arr] # Traverse the vector for i in range ( len (v)): # If v[i] is divisible by K if (v[i] % K = = 0 ): x = v[i] / / K # Iterate over the range # [0, K] for j in range (K): # Update v v.append(x) # Otherwise else : break # Traverse the vector v for i in range ( len (v)): sum = sum + v[i] # Return the sum of the updated array return sum # Driver Code if __name__ = = '__main__' : arr = [ 4 , 6 , 8 , 2 ] K = 2 N = len (arr) print (summ(arr, N, K)) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K static int sum( int [] arr, int N, int K) { // Stores the sum of the array int sum = 0; List< int > v = new List< int >(); // Traverse the array arr[] for ( int i = 0; i < N; i++) { v.Add(arr[i]); } // Traverse the vector for ( int i = 0; i < v.Count; i++) { // If v[i] is divisible by K if (v[i] % K == 0) { int x = v[i] / K; // Iterate over the range // [0, K] for ( int j = 0; j < K; j++) { // Update v v.Add(x); } } // Otherwise else break ; } // Traverse the vector v for ( int i = 0; i < v.Count; i++) sum = sum + v[i]; // Return the sum of the updated array return sum; } // Driver Code public static void Main( string [] args) { int [] arr = { 4, 6, 8, 2 }; int K = 2; int N = arr.Length; Console.WriteLine(sum(arr, N, K)); } } // This code is contributed by ukasp. |
Javascript
<script> // Javascript program for the above approach // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K function sum(arr, N, K) { // Stores the sum of the array var sum = 0; var v = []; // Traverse the array arr[] for ( var i = 0; i < N; i++) { v.push(arr[i]); } // Traverse the vector for ( var i = 0; i < v.length; i++) { // If v[i] is divisible by K if (v[i] % K == 0) { var x = v[i] / K; // Iterate over the range // [0, K] for ( var j = 0; j < K; j++) { // Update v v.push(x); } } // Otherwise else break ; } // Traverse the vector v for ( var i = 0; i < v.length; i++) sum = sum + v[i]; // Return the sum of the updated array return sum; } // Driver Code var arr = [4, 6, 8, 2]; var K = 2; var N = arr.length; document.write( sum(arr, N, K)); </script> |
44
Time Complexity: O(N * K * log N)
Auxiliary Space: O(M), M is the maximum element of the array.
Efficient Approach: The above approach can also be optimized based on the following observations:
- If arr[i] is divisible by K, then adding arr[i] / K, K times increases the sum by arr[i].
- Therefore, the idea is to only push the arr[i] / K only once at the end of the vector.
Follow the steps below to solve the problem:
- Initialize a variable, say sum as 0 that stores the sum of all the array elements array A[].
- Initialize an array, say A[] and store all the array elements arr[] in A[].
- Initialize a variable, say flag as 0 that stores whether the element is to be added at the end of the array or not.
- Traverse the array A[] and perform the following steps:
- If the value flag is 0 and A[i] is divisible by K, then push A[i] at the end of V.
- Otherwise, update the value of flag as 1.
- Increment the value of the sum by V[i % N].
- After completing the above steps, print the value of the sum as the resultant sum.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K int sum( int arr[], int N, int K) { // Stores the sum of the array int sum = 0; // Stores the array elements vector< int > v; // Traverse the array for ( int i = 0; i < N; i++) { v.push_back(arr[i]); } // Stores if the operation // should be formed or not bool flag = 0; // Traverse the vector V for ( int i = 0; i < v.size(); i++) { // If flag is false and if // v[i] is divisible by K if (!flag && v[i] % K == 0) v.push_back(v[i] / K); // Otherwise, set flag as true else { flag = 1; } // Increment the sum by v[i % N] sum = sum + v[i % N]; } // Return the resultant sum return sum; } // Driver Code int main() { int arr[] = { 4, 6, 8, 2 }; int K = 2; int N = sizeof (arr) / sizeof (arr[0]); cout << sum(arr, N, K); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.util.*; class GFG { // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K static int sum( int arr[], int N, int K) { // Stores the sum of the array int sum = 0 ; // Stores the array elements ArrayList<Integer> v = new ArrayList<Integer>(); // Traverse the array for ( int i = 0 ; i < N; i++) { v.add(arr[i]); } // Stores if the operation // should be formed or not boolean flag = false ; // Traverse the vector V for ( int i = 0 ; i < v.size(); i++) { // If flag is false and if // v[i] is divisible by K if (!flag && v.get(i) % K == 0 ) v.add(v.get(i) / K); // Otherwise, set flag as true else { flag = true ; } // Increment the sum by v[i % N] sum = sum + v.get(i % N); } // Return the resultant sum return sum; } // Driver Code public static void main (String[] args) { int arr[] = { 4 , 6 , 8 , 2 }; int K = 2 ; int N = arr.length; System.out.println(sum(arr, N, K)); } } // This code is contributed by Dharanendra L V. |
Python3
# Python program for the above approach # Function to calculate sum of array # elements after adding arr[i] / K # to the end of the array if arr[i] # is divisible by K def Sum (arr, N, K): # Stores the sum of the array sum = 0 # Stores the array elements v = [] # Traverse the array for i in range (N): v.append(arr[i]) # Stores if the operation # should be formed or not flag = False i = 0 lenn = len (v) # Traverse the vector V while (i < lenn): # If flag is false and if # v[i] is divisible by K if ( flag = = False and (v[i] % K = = 0 )): v.append(v[i] / / K) # Otherwise, set flag as true else : flag = True # Increment the sum by v[i % N] sum + = v[i % N] i + = 1 lenn = len (v) # Return the resultant sum return sum # Driver Code arr = [ 4 , 6 , 8 , 2 ] K = 2 N = len (arr) print ( Sum (arr, N, K)) # This code is contributed by avanitrachhadiya2155 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K static int sum( int []arr, int N, int K) { // Stores the sum of the array int sum = 0; // Stores the array elements List< int > v = new List< int >(); // Traverse the array for ( int i = 0; i < N; i++) { v.Add(arr[i]); } // Stores if the operation // should be formed or not bool flag = false ; // Traverse the vector V for ( int i = 0; i < v.Count; i++) { // If flag is false and if // v[i] is divisible by K if (!flag && v[i] % K == 0) v.Add(v[i] / K); // Otherwise, set flag as true else { flag = true ; } // Increment the sum by v[i % N] sum = sum + v[i % N]; } // Return the resultant sum return sum; } // Driver Code static void Main() { int [] arr = { 4, 6, 8, 2 }; int K = 2; int N = arr.Length; Console.WriteLine(sum(arr, N, K)); } } // This code is contributed by SoumikMondal |
Javascript
<script> // javascript program for the above approach // Function to calculate sum of array // elements after adding arr[i] / K // to the end of the array if arr[i] // is divisible by K function sum(arr, N, K) { // Stores the sum of the array var sum = 0; var i; // Stores the array elements var v = []; // Traverse the array for (i = 0; i < N; i++) { v.push(arr[i]); } // Stores if the operation // should be formed or not var flag = 0; // Traverse the vector V for (i = 0; i < v.length; i++) { // If flag is false and if // v[i] is divisible by K if (!flag && v[i] % K == 0) v.push(v[i] / K); // Otherwise, set flag as true else { flag = 1; } // Increment the sum by v[i % N] sum = sum + v[i % N]; } // Return the resultant sum return sum; } // Driver Code var arr = [4, 6, 8, 2]; var K = 2; var N = arr.length; document.write(sum(arr, N, K)); </script> |
44
Time Complexity: O(N * log N)
Auxiliary Space: O(N * log N)
Please Login to comment...