Skip to content
Related Articles

Related Articles

Improve Article
Sum of an Infinite Geometric Progression ( GP )
  • Last Updated : 07 May, 2021

Given two integers A and R, representing the first term and the common ratio of a geometric sequence, the task is to find the sum of the infinite geometric series formed by the given first term and the common ratio.

Examples:

Input: A = 1, R = 0.5
Output: 2

Input: A = 1, R = -0.25
Output: 0.8

Approach: The given problem can be solved based on the following observations:



  • If absolute of value of R is greater than equal to 1, then the sum will be infinite.
  • Otherwise, the sum of the Geometric series with infinite terms can be calculated using the formula

Sum = \frac{A}{(1 - R)}

Therefore, if the absolute value of R is greater than equal to 1, then print “Infinite”. Otherwise, print the value \frac{A}{(1 - R)}         as the resultant sum.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum of
// an infinite Geometric Progression
void findSumOfGP(double a, double r)
{
    // Case for Infinite Sum
    if (abs(r) >= 1) {
        cout << "Infinite";
        return;
    }
 
    // Store the sum of GP Series
    double sum = a / (1 - r);
 
    // Print the value of sum
    cout << sum;
}
 
// Driver Code
int main()
{
    double A = 1, R = 0.5;
    findSumOfGP(A, R);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to calculate the sum of
// an infinite Geometric Progression
static void findSumOfGP(double a, double r)
{
     
    // Case for Infinite Sum
    if (Math.abs(r) >= 1)
    {
        System.out.print("Infinite");
        return;
    }
 
    // Store the sum of GP Series
    double sum = a / (1 - r);
 
    // Print the value of sum
    System.out.print(sum);
}
 
// Driver Code
public static void main(String[] args)
{
    double A = 1, R = 0.5;
    findSumOfGP(A, R);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program for the above approach
 
# Function to calculate the sum of
# an infinite Geometric Progression
def findSumOfGP(a, r):
   
    # Case for Infinite Sum
    if (abs(r) >= 1):
        print("Infinite")
        return
 
    # Store the sum of GP Series
    sum = a / (1 - r)
 
    # Print the value of sum
    print(int(sum))
 
# Driver Code
if __name__ == '__main__':
    A, R = 1, 0.5
    findSumOfGP(A, R)
 
# This code is contributed by mohit kumar 29.

C#




// C# program for the above approach
using System;
class GFG
{
   
    // Function to calculate the sum of
    // an infinite Geometric Progression
    static void findSumOfGP(double a, double r)
    {
       
        // Case for Infinite Sum
        if (Math.Abs(r) >= 1) {
            Console.Write("Infinite");
            return;
        }
 
        // Store the sum of GP Series
        double sum = a / (1 - r);
 
        // Print the value of sum
        Console.Write(sum);
    }
 
    // Driver Code
    public static void Main()
    {
        double A = 1, R = 0.5;
        findSumOfGP(A, R);
    }
}
 
// This code is contributed by ukasp.

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to calculate the sum of
// an infinite Geometric Progression
function findSumOfGP(a, r)
{
     
    // Case for Infinite Sum
    if (Math.abs(r) >= 1)
    {
        document.write("Infinite");
        return;
    }
 
    // Store the sum of GP Series
    let sum = a / (1 - r);
 
    // Print the value of sum
    document.write(sum);
}
 
// Driver Code
let A = 1, R = 0.5;
 
findSumOfGP(A, R);
 
// This code is contributed by sanjoy_62
     
</script>
Output: 
2

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :