Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sum of all the numbers present at given level in Modified Pascal’s triangle

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a level N, the task is to find the sum of all the integers present at this given level in an Alternating Pascal’s triangle. 
A Modified Pascal triangle with 5 levels is shown below.

     1
   -1 1
   1 -2 1
 -1 3 -3 1
1 -4 6 -4 1

Examples: 

Input: N = 1
Output: 1

Input: N = 2
Output: 0

Approach: As we can observe for even level sum is 0 and for odd level except for 1 sum is also 0. So There can be at most 2 cases:  

  • If L = 1, then the answer is 1.
  • Otherwise, the answer will always be 0.

Below is the implementation of the above approach: 

C++




// C++ program to calculate sum of
// all the numbers present at given
// level in an Modified Pascal’s triangle
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum
void ans(int n)
{
    if (n == 1)
        cout << "1";
    else
        cout << "0";
}
 
// Driver Code
int main()
{
    int n = 2;
    ans(n);
 
    return 0;
}

Java




// Java program to calculate sum of
// all the numbers present at given
// level in an Modified Pascal's triangle
import java.io.*;
 
public class GFG {
 
    // Function to calculate sum
    static void ans(int n)
    {
        if (n == 1)
            System.out.println("1");
        else
            System.out.println("0");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 2;
        ans(n);
    }
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to calculate sum of
# all the numbers present at given
# level in an Modified Pascal’s triangle
 
# Function to calculate sum
def ans(n) :
 
    if (n == 1) :
        print("1",end="");
    else :
        print("0",end="");
 
# Driver Code
if __name__ == "__main__" :
 
    n = 2;
    ans(n);
     
# This code is contributed by AnkitRai01

C#




// C# program to calculate sum of
// all the numbers present at given
// level in an Modified Pascal's triangle
using System;
     
class GFG
{
 
// Function to calculate sum
static void ans(int n)
{
    if (n == 1)
        Console.WriteLine("1");
    else
        Console.WriteLine("0");
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 2;
    ans(n);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript program to calculate sum of
// all the numbers present at given
// level in an Modified Pascal’s triangle
 
// Function to calculate sum
function ans(n)
{
    if (n == 1)
        document.write("1");
    else
        document.write("0");
}
 
// Driver Code
var n = 2;
 
ans(n);
 
// This code is contributed by rutvik_56
 
</script>

Output: 

0

 

Time Complexity: O(1)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Last Updated : 08 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials