Sum of all the child nodes with even grandparents in a Binary Tree

Given a Binary Tree, calculate the sum of nodes with even valued Grandparents.
Examples: 

Input: 
      22
    /    \
   3      8
  / \    / \
 4   8  1   9
             \
              2
Output: 24
Explanation 
The nodes 4, 8, 2, 1, 9
has even value grandparents. 
Hence sum = 4 + 8 + 1 + 9 + 2 = 24.

Input:
        1
      /   \
     2     3
    / \   / \
   4   5 6   7
  /
 8
Output: 8
Explanation 
Only 8 has 2 as a grandparent.

Approach: To solve the problem mentioned above, for each node that is not null, check if they have a grandparent and if their grandparent is even valued add the node’s data to the sum.
Below is the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find sum
// of all the child nodes with
// even grandparents in a Binary Tree
 
#include <bits/stdc++.h>
using namespace std;
 
/* A binary tree node has data and
pointers to the right and left children*/
struct TreeNode {
    int data;
    TreeNode *left, *right;
    TreeNode(int x)
    {
        data = x;
        left = right = NULL;
    }
};
 
// Function to calculate the sum
void getSum(
    TreeNode* curr, TreeNode* p,
    TreeNode* gp, int& sum)
{
    // Base condition
    if (curr == NULL)
        return;
 
    // Check if node has a grandparent
    // if it does check
    // if they are even valued
    if (gp != NULL && gp->data % 2 == 0)
        sum += curr->data;
 
    // Recurse for left child
    getSum(curr->left, curr, p, sum);
 
    // Recurse for right child
    getSum(curr->right, curr, p, sum);
}
 
// Driver Program
int main()
{
    TreeNode* root = new TreeNode(22);
 
    root->left = new TreeNode(3);
    root->right = new TreeNode(8);
 
    root->left->left = new TreeNode(4);
    root->left->right = new TreeNode(8);
 
    root->right->left = new TreeNode(1);
    root->right->right = new TreeNode(9);
    root->right->right->right = new TreeNode(2);
 
    int sum = 0;
    getSum(root, NULL, NULL, sum);
    cout << sum << '\n';
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find sum
// of all the child nodes with
// even grandparents in a Binary Tree
import java.util.*;
class GFG{
 
/* A binary tree node has data and
pointers to the right and left children*/
static class TreeNode
{
  int data;
  TreeNode left, right;
  TreeNode(int x)
  {
    data = x;
    left = right = null;
  }
}
   
static int sum = 0;
   
// Function to calculate the sum
static void getSum(TreeNode curr,
                   TreeNode p,
                   TreeNode gp)
{
  // Base condition
  if (curr == null)
    return;
 
  // Check if node has
  // a grandparent
  // if it does check
  // if they are even valued
  if (gp != null && gp.data % 2 == 0)
    sum += curr.data;
 
  // Recurse for left child
  getSum(curr.left, curr, p);
 
  // Recurse for right child
  getSum(curr.right, curr, p);
}
 
// Driver Program
public static void main(String[] args)
{
  TreeNode root = new TreeNode(22);
 
  root.left = new TreeNode(3);
  root.right = new TreeNode(8);
 
  root.left.left = new TreeNode(4);
  root.left.right = new TreeNode(8);
 
  root.right.left = new TreeNode(1);
  root.right.right = new TreeNode(9);
  root.right.right.right = new TreeNode(2);
 
  getSum(root, null, null);
  System.out.println(sum);
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find sum
// of all the child nodes with
// even grandparents in a Binary Tree
using System;
class GFG{
 
/* A binary tree node
has data and pointers to
the right and left children*/
class TreeNode
{
  public int data;
  public TreeNode left, right;
  public TreeNode(int x)
  {
    data = x;
    left = right = null;
  }
}
   
static int sum = 0;
   
// Function to calculate the sum
static void getSum(TreeNode curr,
                   TreeNode p,
                   TreeNode gp)
{
  // Base condition
  if (curr == null)
    return;
 
  // Check if node has
  // a grandparent
  // if it does check
  // if they are even valued
  if (gp != null && gp.data % 2 == 0)
    sum += curr.data;
 
  // Recurse for left child
  getSum(curr.left, curr, p);
 
  // Recurse for right child
  getSum(curr.right, curr, p);
}
 
// Driver Program
public static void Main(String[] args)
{
  TreeNode root = new TreeNode(22);
 
  root.left = new TreeNode(3);
  root.right = new TreeNode(8);
 
  root.left.left = new TreeNode(4);
  root.left.right = new TreeNode(8);
 
  root.right.left = new TreeNode(1);
  root.right.right = new TreeNode(9);
  root.right.right.right = new TreeNode(2);
 
  getSum(root, null, null);
  Console.WriteLine(sum);
}
}
 
// This code is contributed by Princi Singh

chevron_right


Output: 

24





 

Time Complexity: O(N)
Space Complexity: O(H), Used by recursion stack where H = height of the tree. 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Rajput-Ji, princi singh