Sum of all the Boundary Nodes of a Binary Tree

Given a binary tree, the task is to print the sum of all the boundary nodes of the tree.
 

Examples: 

Input:
               1
             /   \
            2     3
           / \   / \
          4   5 6   7
Output: 28

Input:
                1
              /   \
             2     3
              \    /
               4  5
                  \
                   6
                  / \
                 7   8
Output: 36


Approach: We have already discussed the Boundary Traversal of a Binary tree. Here we will find the sum of the boundary nodes of the given binary tree in four steps: 

We will have to take care of one thing that nodes don’t add up again, i.e. the left most node is also the leaf node of the tree.



Below is the implementation of the above approach: 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// A binary tree node has data,
// pointer to left child
// and a pointer to right child
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// Utility function to create a node
Node* newNode(int data)
{
    Node* temp = new Node;
 
    temp->left = NULL;
    temp->right = NULL;
    temp->data = data;
 
    return temp;
}
 
// Function to sum up all the left boundary nodes
// except the leaf nodes
void LeftBoundary(Node* root, int& sum_of_boundary_nodes)
{
    if (root) {
        if (root->left) {
            sum_of_boundary_nodes += root->data;
            LeftBoundary(root->left, sum_of_boundary_nodes);
        }
        else if (root->right) {
            sum_of_boundary_nodes += root->data;
            LeftBoundary(root->right, sum_of_boundary_nodes);
        }
    }
}
 
// Function to sum up all the right boundary nodes
// except the leaf nodes
void RightBoundary(Node* root, int& sum_of_boundary_nodes)
{
    if (root) {
        if (root->right) {
            RightBoundary(root->right, sum_of_boundary_nodes);
            sum_of_boundary_nodes += root->data;
        }
        else if (root->left) {
            RightBoundary(root->left, sum_of_boundary_nodes);
            sum_of_boundary_nodes += root->data;
        }
    }
}
 
// Function to sum up all the leaf nodes
// of a binary tree
void Leaves(Node* root, int& sum_of_boundary_nodes)
{
    if (root) {
        Leaves(root->left, sum_of_boundary_nodes);
 
        // Sum it up if it is a leaf node
        if (!(root->left) && !(root->right))
            sum_of_boundary_nodes += root->data;
 
        Leaves(root->right, sum_of_boundary_nodes);
    }
}
 
// Function to return the sum of all the
// boundary nodes of the given binary tree
int sumOfBoundaryNodes(struct Node* root)
{
    if (root) {
 
        // Root node is also a boundary node
        int sum_of_boundary_nodes = root->data;
 
        // Sum up all the left nodes
        // in TOP DOWN manner
        LeftBoundary(root->left, sum_of_boundary_nodes);
 
        // Sum up all the
        // leaf nodes
        Leaves(root->left, sum_of_boundary_nodes);
        Leaves(root->right, sum_of_boundary_nodes);
 
        // Sum up all the right nodes
        // in BOTTOM UP manner
        RightBoundary(root->right, sum_of_boundary_nodes);
 
        // Return the sum of
        // all the boundary nodes
        return sum_of_boundary_nodes;
    }
 
    return 0;
}
 
// Driver code
int main()
{
    Node* root = newNode(10);
    root->left = newNode(2);
    root->right = newNode(5);
    root->left->left = newNode(8);
    root->left->right = newNode(14);
    root->right->left = newNode(11);
    root->right->right = newNode(3);
    root->left->right->left = newNode(12);
    root->right->left->right = newNode(1);
    root->right->left->left = newNode(7);
 
    cout << sumOfBoundaryNodes(root);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG
{
    static int sum_of_boundary_nodes=0;
 
// A binary tree node has data,
// pointer to left child
static class Node
{
    int data;
    Node left;
    Node right;
};
 
// Utility function to create a node
static Node newNode(int data)
{
    Node temp = new Node();
 
    temp.left = null;
    temp.right = null;
    temp.data = data;
 
    return temp;
}
 
// Function to sum up all the left boundary nodes
// except the leaf nodes
static void LeftBoundary(Node root)
{
    if (root != null)
    {
        if (root.left != null)
        {
            sum_of_boundary_nodes += root.data;
            LeftBoundary(root.left);
        }
        else if (root.right != null)
        {
            sum_of_boundary_nodes += root.data;
            LeftBoundary(root.right);
        }
    }
}
 
// Function to sum up all the right boundary nodes
// except the leaf nodes
static void RightBoundary(Node root)
{
    if (root != null)
    {
        if (root.right != null)
        {
            RightBoundary(root.right);
            sum_of_boundary_nodes += root.data;
        }
        else if (root.left != null)
        {
            RightBoundary(root.left);
            sum_of_boundary_nodes += root.data;
        }
    }
}
 
// Function to sum up all the leaf nodes
// of a binary tree
static void Leaves(Node root)
{
    if (root != null)
    {
        Leaves(root.left);
 
        // Sum it up if it is a leaf node
        if ((root.left == null) && (root.right == null))
            sum_of_boundary_nodes += root.data;
 
        Leaves(root.right);
    }
}
 
// Function to return the sum of all the
// boundary nodes of the given binary tree
static int sumOfBoundaryNodes( Node root)
{
    if (root != null)
    {
 
        // Root node is also a boundary node
        sum_of_boundary_nodes = root.data;
 
        // Sum up all the left nodes
        // in TOP DOWN manner
        LeftBoundary(root.left);
 
        // Sum up all the
        // leaf nodes
        Leaves(root.left);
        Leaves(root.right);
 
        // Sum up all the right nodes
        // in BOTTOM UP manner
        RightBoundary(root.right);
 
        // Return the sum of
        // all the boundary nodes
        return sum_of_boundary_nodes;
    }
 
    return 0;
}
 
// Driver code
public static void main(String args[])
{
    Node root = newNode(10);
    root.left = newNode(2);
    root.right = newNode(5);
    root.left.left = newNode(8);
    root.left.right = newNode(14);
    root.right.left = newNode(11);
    root.right.right = newNode(3);
    root.left.right.left = newNode(12);
    root.right.left.right = newNode(1);
    root.right.left.left = newNode(7);
 
    System.out.println(sumOfBoundaryNodes(root));
}
}
 
// This code is contributed by andrew1234
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# A binary tree node has data,
# pointer to left child
# and a pointer to right child
class Node:
     
    def __init__(self):
         
        self.left = None
        self.right = None
         
sum_of_boundary_nodes = 0
 
# Utility function to create a node
def newNode(data):
 
    temp = Node()
    temp.data = data;
    return temp;
 
# Function to sum up all the
# left boundary nodes except
# the leaf nodes
def LeftBoundary(root):
     
    global sum_of_boundary_nodes
     
    if (root != None):
        if (root.left != None):
            sum_of_boundary_nodes += root.data;
            LeftBoundary(root.left);
         
        elif (root.right != None):
            sum_of_boundary_nodes += root.data;
            LeftBoundary(root.right);
 
# Function to sum up all the right
# boundary nodes except the leaf nodes
def RightBoundary(root):
     
    global sum_of_boundary_nodes
     
    if (root != None):
        if (root.right != None):
            RightBoundary(root.right);
            sum_of_boundary_nodes += root.data;
         
        elif (root.left != None):
            RightBoundary(root.left);
            sum_of_boundary_nodes += root.data;
         
# Function to sum up all the leaf nodes
# of a binary tree
def Leaves(root):
     
    global sum_of_boundary_nodes
     
    if (root != None):
        Leaves(root.left);
  
        # Sum it up if it is a leaf node
        if ((root.left == None) and
           (root.right == None)):
            sum_of_boundary_nodes += root.data;
  
        Leaves(root.right);
     
# Function to return the sum of all the
# boundary nodes of the given binary tree
def sumOfBoundaryNodes(root):
     
    global sum_of_boundary_nodes
     
    if (root != None):
         
        # Root node is also a boundary node
        sum_of_boundary_nodes = root.data;
  
        # Sum up all the left nodes
        # in TOP DOWN manner
        LeftBoundary(root.left);
  
        # Sum up all the
        # leaf nodes
        Leaves(root.left);
        Leaves(root.right);
  
        # Sum up all the right nodes
        # in BOTTOM UP manner
        RightBoundary(root.right);
  
        # Return the sum of
        # all the boundary nodes
        return sum_of_boundary_nodes;
     
    return 0;
 
# Driver code
if __name__=="__main__":
     
    root = newNode(10);
    root.left = newNode(2);
    root.right = newNode(5);
    root.left.left = newNode(8);
    root.left.right = newNode(14);
    root.right.left = newNode(11);
    root.right.right = newNode(3);
    root.left.right.left = newNode(12);
    root.right.left.right = newNode(1);
    root.right.left.left = newNode(7);
  
    print(sumOfBoundaryNodes(root));
 
# This code is contributed by rutvik_56
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
class GFG
{
static int sum_of_boundary_nodes = 0;
 
// A binary tree node has data,
// pointer to left child
public class Node
{
    public int data;
    public Node left;
    public Node right;
};
 
// Utility function to create a node
static Node newNode(int data)
{
    Node temp = new Node();
 
    temp.left = null;
    temp.right = null;
    temp.data = data;
 
    return temp;
}
 
// Function to sum up all the left boundary
// nodes except the leaf nodes
static void LeftBoundary(Node root)
{
    if (root != null)
    {
        if (root.left != null)
        {
            sum_of_boundary_nodes += root.data;
            LeftBoundary(root.left);
        }
         
        else if (root.right != null)
        {
            sum_of_boundary_nodes += root.data;
            LeftBoundary(root.right);
        }
    }
}
 
// Function to sum up all the right boundary
// nodes except the leaf nodes
static void RightBoundary(Node root)
{
    if (root != null)
    {
        if (root.right != null)
        {
            RightBoundary(root.right);
            sum_of_boundary_nodes += root.data;
        }
        else if (root.left != null)
        {
            RightBoundary(root.left);
            sum_of_boundary_nodes += root.data;
        }
    }
}
 
// Function to sum up all the leaf nodes
// of a binary tree
static void Leaves(Node root)
{
    if (root != null)
    {
        Leaves(root.left);
 
        // Sum it up if it is a leaf node
        if ((root.left == null) &&
            (root.right == null))
            sum_of_boundary_nodes += root.data;
 
        Leaves(root.right);
    }
}
 
// Function to return the sum of all the
// boundary nodes of the given binary tree
static int sumOfBoundaryNodes(Node root)
{
    if (root != null)
    {
 
        // Root node is also a boundary node
        sum_of_boundary_nodes = root.data;
 
        // Sum up all the left nodes
        // in TOP DOWN manner
        LeftBoundary(root.left);
 
        // Sum up all the
        // leaf nodes
        Leaves(root.left);
        Leaves(root.right);
 
        // Sum up all the right nodes
        // in BOTTOM UP manner
        RightBoundary(root.right);
 
        // Return the sum of
        // all the boundary nodes
        return sum_of_boundary_nodes;
    }
    return 0;
}
 
// Driver code
public static void Main(String []args)
{
    Node root = newNode(10);
    root.left = newNode(2);
    root.right = newNode(5);
    root.left.left = newNode(8);
    root.left.right = newNode(14);
    root.right.left = newNode(11);
    root.right.right = newNode(3);
    root.left.right.left = newNode(12);
    root.right.left.right = newNode(1);
    root.right.left.left = newNode(7);
 
    Console.WriteLine(sumOfBoundaryNodes(root));
}
}
 
// This code is contributed by Princi Singh
chevron_right

Output: 
48


 

Time Complexity: O(N) where N is the number of nodes in the binary tree.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :