Related Articles

# Sum of all subsequences of length K

• Difficulty Level : Hard
• Last Updated : 04 May, 2021

Given an array arr[]and an integer K, the task is to find the sum of all K length subsequences from the given array.

Example:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {2, 3, 4}, K = 2
Output: 18
Explanation:
There are 3 possible subsequences of length 2 which are {2, 3}, {2, 4} and {3, 4}
The sum of all 2 length subsequences is 5 + 6 + 7 = 18

Input: arr[] = {7, 8, 9, 2}, K = 2
Output: 78
Explanation:
There are 6 subsequences of length 2 which are {7, 8}, {7, 9}, {7, 2}, {8, 9}, {8, 2} and {9, 2}.
The sum of all 2 length sub sequences is 15 + 16 + 9 + 17 + 10 + 11 = 78

Approach:
To solve the problem mentioned above we have to consider all K length subsequence that is “n choose k”, i.e. • The count of total element in all K length subsequences is , possibility of appearing of each element is same.
• So each element appears times and it contributes in the result.
• Hence, the sum of all K length subsequence is Below is the implementation of the above mentioned approach:

## C++

 `// C++ implementation to find sum``// of all subsequences of length K`` ` `#include ``using` `namespace` `std;`` ` `int` `fact(``int` `n);`` ` `// Function to find nCr``int` `nCr(``int` `n, ``int` `r)``{``    ``return` `fact(n)``           ``/ (fact(r)``              ``* fact(n - r));``}`` ` `// Function that returns``// factorial of n``int` `fact(``int` `n)``{``    ``int` `res = 1;``    ``for` `(``int` `i = 2; i <= n; i++)``        ``res = res * i;``    ``return` `res;``}`` ` `// Function for finding sum``// of all K length subsequences``int` `sumSubsequences(``    ``int` `arr[], ``int` `n, ``int` `k)``{`` ` `    ``int` `sum = 0;`` ` `    ``// Calculate the sum of array``    ``for` `(``int` `i = 0; i < n; i++) {``        ``sum += arr[i];``    ``}``    ``int` `kLengthSubSequence;`` ` `    ``// Calculate nCk``    ``kLengthSubSequence = nCr(n, k);`` ` `    ``int` `ans``        ``= sum``          ``* ((k * kLengthSubSequence)``             ``/ n);`` ` `    ``// Return the final result``    ``return` `ans;``}`` ` `// Driver code``int` `main()``{`` ` `    ``int` `arr[] = { 7, 8, 9, 2 };`` ` `    ``int` `K = 2;`` ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);`` ` `    ``cout << sumSubsequences(arr, n, K);``    ``return` `0;``}`

## Java

 `// Java implementation to find sum``// of all subsequences of length K``class` `GFG{`` ` `// Function to find nCr``static` `int` `nCr(``int` `n, ``int` `r)``{``    ``return` `fact(n) / (fact(r) * fact(n - r));``}`` ` `// Function that returns``// factorial of n``static` `int` `fact(``int` `n)``{``    ``int` `res = ``1``;``    ``for` `(``int` `i = ``2``; i <= n; i++)``        ``res = res * i;``    ``return` `res;``}`` ` `// Function for finding sum``// of all K length subsequences``static` `int` `sumSubsequences(``int` `arr[], ``                           ``int` `n, ``int` `k)``{``    ``int` `sum = ``0``;`` ` `    ``// Calculate the sum of array``    ``for` `(``int` `i = ``0``; i < n; i++) ``    ``{``        ``sum += arr[i];``    ``}``    ``int` `kLengthSubSequence;`` ` `    ``// Calculate nCk``    ``kLengthSubSequence = nCr(n, k);`` ` `    ``int` `ans = sum * ((k * kLengthSubSequence) / n);`` ` `    ``// Return the final result``    ``return` `ans;``}`` ` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``7``, ``8``, ``9``, ``2` `};`` ` `    ``int` `K = ``2``;`` ` `    ``int` `n = arr.length;`` ` `    ``System.out.print(sumSubsequences(arr, n, K));``}``}`` ` `// This code contributed by Rajput-Ji`

## Python3

 `# Python3 implementation to find sum ``# of all subsequences of length K`` ` `# Function to find nCr ``def` `nCr(n, r):``     ` `    ``return` `fact(n) ``/` `(fact(r) ``*` `                      ``fact(n ``-` `r))`` ` `# Function that returns ``# factorial of n``def` `fact(n):``     ` `    ``res ``=` `1``    ``for` `i ``in` `range``(``2``, n ``+` `1``):``        ``res ``=` `res ``*` `i ``    ``return` `res``     ` `# Function for finding sum ``# of all K length subsequences``def` `sumSubsequences(arr, n, k):``     ` `    ``sum` `=` `0``     ` `    ``# Calculate the sum of array ``    ``for` `i ``in` `range``(``0``, n):``        ``sum` `=` `sum` `+` `arr[i]``     ` `    ``# Calculate nCk     ``    ``kLengthSubSequence ``=` `nCr(n, k)``    ``ans ``=` `sum` `*` `((k ``*` `kLengthSubSequence) ``/` `n);``     ` `    ``# Return the final result ``    ``return` `ans`` ` `# Driver Code ``arr ``=` `[ ``7``, ``8``, ``9``, ``2` `]``k ``=` `2``n ``=` `len``(arr)`` ` `print``(sumSubsequences(arr, n, k))`` ` `# This code is contributed by skylags    `

## C#

 `// C# implementation to find sum``// of all subsequences of length K``using` `System;`` ` `class` `GFG{``     ` `// Function to find nCr``static` `int` `nCr(``int` `n, ``int` `r)``{``    ``return` `fact(n) / (fact(r) * fact(n - r));``}``     ` `// Function that returns``// factorial of n``static` `int` `fact(``int` `n)``{``    ``int` `res = 1;``     ` `    ``for``(``int` `i = 2; i <= n; i++)``       ``res = res * i;``    ``return` `res;``}``     ` `// Function for finding sum``// of all K length subsequences``static` `int` `sumSubsequences(``int``[] arr, ``                           ``int` `n, ``int` `k)``{``    ``int` `sum = 0;``     ` `    ``// Calculate the sum of array``    ``for``(``int` `i = 0; i < n; i++) ``    ``{``       ``sum += arr[i];``    ``}``     ` `    ``int` `kLengthSubSequence;``     ` `    ``// Calculate nCk``    ``kLengthSubSequence = nCr(n, k);``    ``int` `ans = sum * ((k * kLengthSubSequence) / n);``     ` `    ``// Return the final result``    ``return` `ans;``}`` ` `// Driver code``static` `void` `Main() ``{``    ``int``[] arr = { 7, 8, 9, 2 };``    ``int` `K = 2;``    ``int` `n = arr.Length;``         ` `    ``Console.Write(sumSubsequences(arr, n, K));``}``}`` ` `// This code is contributed by divyeshrabadiya07`

## Javascript

 ``
Output:
`78`

My Personal Notes arrow_drop_up