Open In App
Related Articles

Sum of all subarrays of size K

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an array arr[] and an integer K, the task is to calculate the sum of all subarrays of size K.

Examples: 

Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 3 
Output: 6 9 12 15 
Explanation: 
All subarrays of size k and their sum: 
Subarray 1: {1, 2, 3} = 1 + 2 + 3 = 6 
Subarray 2: {2, 3, 4} = 2 + 3 + 4 = 9 
Subarray 3: {3, 4, 5} = 3 + 4 + 5 = 12 
Subarray 4: {4, 5, 6} = 4 + 5 + 6 = 15

Input: arr[] = {1, -2, 3, -4, 5, 6}, K = 2 
Output: -1, 1, -1, 1, 11 
Explanation: 
All subarrays of size K and their sum: 
Subarray 1: {1, -2} = 1 – 2 = -1 
Subarray 2: {-2, 3} = -2 + 3 = -1 
Subarray 3: {3, 4} = 3 – 4 = -1 
Subarray 4: {-4, 5} = -4 + 5 = 1 
Subarray 5: {5, 6} = 5 + 6 = 11 

Naive Approach: The naive approach will be to generate all subarrays of size K and find the sum of each subarray using iteration.

Below is the implementation of the above approach: 

C++




// C++ implementation to find the sum
// of all subarrays of size K
  
#include <iostream>
using namespace std;
  
// Function to find the sum of
// all subarrays of size K
int calcSum(int arr[], int n, int k)
{
  
    // Loop to consider every
    // subarray of size K
    for (int i = 0; i <= n - k; i++) {
          
        // Initialize sum = 0
        int sum = 0;
  
        // Calculate sum of all elements
        // of current subarray
        for (int j = i; j < k + i; j++)
            sum += arr[j];
  
        // Print sum of each subarray
        cout << sum << " ";
    }
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
  
    // Function Call
    calcSum(arr, n, k);
  
    return 0;
}


Java




// Java implementation to find the sum
// of all subarrays of size K
class GFG{
   
// Function to find the sum of 
// all subarrays of size K
static void calcSum(int arr[], int n, int k)
{
   
    // Loop to consider every 
    // subarray of size K
    for (int i = 0; i <= n - k; i++) {
           
        // Initialize sum = 0
        int sum = 0;
   
        // Calculate sum of all elements
        // of current subarray
        for (int j = i; j < k + i; j++)
            sum += arr[j];
   
        // Print sum of each subarray
        System.out.print(sum+ " ");
    }
}
   
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5, 6 };
    int n = arr.length;
    int k = 3;
   
    // Function Call
    calcSum(arr, n, k); 
}
}
  
// This code is contributed by Rajput-Ji


C#




// C# implementation to find the sum
// of all subarrays of size K
using System; 
  
class GFG  
    
    // Function to find the sum of 
    // all subarrays of size K
    static  void calcSum(int[] arr, int n, int k)
    {
      
        // Loop to consider every 
        // subarray of size K
        for (int i = 0; i <= n - k; i++) {
              
            // Initialize sum = 0
            int sum = 0;
      
            // Calculate sum of all elements
            // of current subarray
            for (int j = i; j < k + i; j++)
                sum += arr[j];
      
            // Print sum of each subarray
            Console.Write(sum + " ");
        }
    }
      
    // Driver Code
    static void Main() 
    {
        int[] arr = new int[] { 1, 2, 3, 4, 5, 6 };
        int n = arr.Length;
        int k = 3;
      
        // Function Call
        calcSum(arr, n, k);
      
    }
}
  
// This code is contributed by shubhamsingh10


Python3




# Python3 implementation to find the sum
# of all subarrays of size K
  
# Function to find the sum of
# all subarrays of size K
def calcSum(arr, n, k):
  
    # Loop to consider every
    # subarray of size K
    for i in range(n - k + 1):
          
        # Initialize sum = 0
        sum = 0
  
        # Calculate sum of all elements
        # of current subarray
        for j in range(i, k + i):
            sum += arr[j]
  
        # Print sum of each subarray
        print(sum, end=" ")
  
# Driver Code
arr=[1, 2, 3, 4, 5, 6]
n = len(arr)
k = 3
  
# Function Call
calcSum(arr, n, k)
  
# This code is contributed by mohit kumar 29


Javascript




<script>
  
// JavaScript implementation to find the sum
// of all subarrays of size K
  
// Function to find the sum of 
// all subarrays of size K
function calcSum(arr, n, k)
{
  
    // Loop to consider every 
    // subarray of size K
    for (var i = 0; i <= n - k; i++) {
          
        // Initialize sum = 0
        var sum = 0;
  
        // Calculate sum of all elements
        // of current subarray
        for (var j = i; j < k + i; j++)
            sum += arr[j];
  
        // Print sum of each subarray
        document.write(sum + " ");
    }
}
  
// Driver Code
var arr = [ 1, 2, 3, 4, 5, 6 ];
var n = arr.length;
var k = 3;
  
// Function Call
calcSum(arr, n, k);
  
  
</script>


Output: 

6 9 12 15

 

Performance Analysis: 

  • Time Complexity: As in the above approach, There are two loops, where first loop runs (N – K) times and second loop runs for K times. Hence the Time Complexity will be O(N*K).
  • Auxiliary Space Complexity: As in the above approach. There is no extra space used. Hence the auxiliary space complexity will be O(1).

Efficient Approach: Using Sliding Window The idea is to use the sliding window approach to find the sum of all possible subarrays in the array.

  • For each size in the range [0, K], find the sum of the first window of size K and store it in an array.
  • Then for each size in the range [K, N], add the next element which contributes into the sliding window and subtract the element which pops out from the window.
// Adding the element which
// adds into the new window
sum = sum + arr[j]

// Subtracting the element which
// pops out from the window
sum = sum - arr[j-k]

where sum is the variable to store the result
      arr is the given array
      j is the loop variable in range [K, N]

Below is the implementation of the above approach: 

C++




// C++ implementation to find the sum
// of all subarrays of size K
  
#include <iostream>
using namespace std;
  
// Function to find the sum of
// all subarrays of size K
int calcSum(int arr[], int n, int k)
{
    // Initialize sum = 0
    int sum = 0;
  
    // Consider first subarray of size k
    // Store the sum of elements
    for (int i = 0; i < k; i++)
        sum += arr[i];
  
    // Print the current sum
    cout << sum << " ";
  
    // Consider every subarray of size k
    // Remove first element and add current
    // element to the window
    for (int i = k; i < n; i++) {
          
        // Add the element which enters
        // into the window and subtract
        // the element which pops out from
        // the window of the size K
        sum = (sum - arr[i - k]) + arr[i];
          
        // Print the sum of subarray
        cout << sum << " ";
    }
}
  
// Drivers Code
int main()
{
    int arr[] = { 1, 2, 3, 4, 5, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
      
    // Function Call
    calcSum(arr, n, k);
  
    return 0;
}


Java




// Java implementation to find the sum
// of all subarrays of size K
class GFG{
  
// Function to find the sum of 
// all subarrays of size K
static void calcSum(int arr[], int n, int k)
{
    // Initialize sum = 0
    int sum = 0;
  
    // Consider first subarray of size k
    // Store the sum of elements
    for (int i = 0; i < k; i++)
        sum += arr[i];
  
    // Print the current sum
    System.out.print(sum+ " ");
  
    // Consider every subarray of size k
    // Remove first element and add current
    // element to the window
    for (int i = k; i < n; i++) {
          
        // Add the element which enters
        // into the window and subtract
        // the element which pops out from
        // the window of the size K
        sum = (sum - arr[i - k]) + arr[i];
          
        // Print the sum of subarray
        System.out.print(sum+ " ");
    }
}
  
// Drivers Code
public static void main(String[] args)
{
    int arr[] = { 1, 2, 3, 4, 5, 6 };
    int n = arr.length;
    int k = 3;
      
    // Function Call
    calcSum(arr, n, k);
}
}
  
// This code is contributed by sapnasingh4991


Python3




# Python3 implementation to find the sum
# of all subarrays of size K
  
# Function to find the sum of
# all subarrays of size K
def calcSum(arr, n, k):
  
    # Initialize sum = 0
    sum = 0
  
    # Consider first subarray of size k
    # Store the sum of elements
    for i in range( k):
        sum += arr[i]
  
    # Print the current sum
    print( sum ,end= " ")
  
    # Consider every subarray of size k
    # Remove first element and add current
    # element to the window
    for i in range(k,n):
          
        # Add the element which enters
        # into the window and subtract
        # the element which pops out from
        # the window of the size K
        sum = (sum - arr[i - k]) + arr[i]
          
        # Print the sum of subarray
        print( sum ,end=" ")
  
# Drivers Code
if __name__ == "__main__":
  
    arr = [ 1, 2, 3, 4, 5, 6 ]
    n = len(arr)
    k = 3
      
    # Function Call
    calcSum(arr, n, k)
  
# This code is contributed by chitranayal


C#




// C# implementation to find the sum
// of all subarrays of size K
using System;
  
class GFG{
   
// Function to find the sum of 
// all subarrays of size K
static void calcSum(int []arr, int n, int k)
{
    // Initialize sum = 0
    int sum = 0;
   
    // Consider first subarray of size k
    // Store the sum of elements
    for (int i = 0; i < k; i++)
        sum += arr[i];
   
    // Print the current sum
    Console.Write(sum+ " ");
   
    // Consider every subarray of size k
    // Remove first element and add current
    // element to the window
    for (int i = k; i < n; i++) {
           
        // Add the element which enters
        // into the window and subtract
        // the element which pops out from
        // the window of the size K
        sum = (sum - arr[i - k]) + arr[i];
           
        // Print the sum of subarray
        Console.Write(sum + " ");
    }
}
   
// Drivers Code
public static void Main(String[] args)
{
    int []arr = { 1, 2, 3, 4, 5, 6 };
    int n = arr.Length;
    int k = 3;
       
    // Function Call
    calcSum(arr, n, k);
}
}
  
// This code is contributed by 29AjayKumar


Javascript




<script>
  
// Javascript implementation to find the sum
// of all subarrays of size K
  
// Function to find the sum of
// all subarrays of size K
function calcSum(arr, n, k)
{
  
    // Initialize sum = 0
    var sum = 0;
  
    // Consider first subarray of size k
    // Store the sum of elements
    for (var i = 0; i < k; i++)
        sum += arr[i];
  
    // Print the current sum
    document.write( sum + " ");
  
    // Consider every subarray of size k
    // Remove first element and add current
    // element to the window
    for (var i = k; i < n; i++) {
          
        // Add the element which enters
        // into the window and subtract
        // the element which pops out from
        // the window of the size K
        sum = (sum - arr[i - k]) + arr[i];
          
        // Print the sum of subarray
        document.write( sum + " ");
    }
}
  
// Drivers Code
var arr = [ 1, 2, 3, 4, 5, 6 ];
var n = arr.length;
var k = 3;
  
// Function Call
calcSum(arr, n, k);
  
// This code is contributed by noob2000.
</script>


Output: 

6 9 12 15

 

Performance Analysis: 

  • Time Complexity: As in the above approach. There is one loop which take O(N) time. Hence the Time Complexity will be O(N).
  • Auxiliary Space Complexity: As in the above approach. There is no extra space used. Hence the auxiliary space complexity will be O(1).
     

Related Topic: Subarrays, Subsequences, and Subsets in Array


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 11 Jul, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials