Given an array arr[] and an integer K, the task is to calculate the sum of all subarrays of size K.
Examples:
Input: arr[] = {1, 2, 3, 4, 5, 6}, K = 3
Output: 6 9 12 15
Explanation:
All subarrays of size k and their sum:
Subarray 1: {1, 2, 3} = 1 + 2 + 3 = 6
Subarray 2: {2, 3, 4} = 2 + 3 + 4 = 9
Subarray 3: {3, 4, 5} = 3 + 4 + 5 = 12
Subarray 4: {4, 5, 6} = 4 + 5 + 6 = 15
Input: arr[] = {1, -2, 3, -4, 5, 6}, K = 2
Output: -1, 1, -1, 1, 11
Explanation:
All subarrays of size K and their sum:
Subarray 1: {1, -2} = 1 – 2 = -1
Subarray 2: {-2, 3} = -2 + 3 = -1
Subarray 3: {3, 4} = 3 – 4 = -1
Subarray 4: {-4, 5} = -4 + 5 = 1
Subarray 5: {5, 6} = 5 + 6 = 11
Naive Approach: The naive approach will be to generate all subarrays of size K and find the sum of each subarray using iteration.
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
int calcSum( int arr[], int n, int k)
{
for ( int i = 0; i <= n - k; i++) {
int sum = 0;
for ( int j = i; j < k + i; j++)
sum += arr[j];
cout << sum << " " ;
}
}
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int n = sizeof (arr) / sizeof (arr[0]);
int k = 3;
calcSum(arr, n, k);
return 0;
}
|
Java
class GFG{
static void calcSum( int arr[], int n, int k)
{
for ( int i = 0 ; i <= n - k; i++) {
int sum = 0 ;
for ( int j = i; j < k + i; j++)
sum += arr[j];
System.out.print(sum+ " " );
}
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 };
int n = arr.length;
int k = 3 ;
calcSum(arr, n, k);
}
}
|
C#
using System;
class GFG
{
static void calcSum( int [] arr, int n, int k)
{
for ( int i = 0; i <= n - k; i++) {
int sum = 0;
for ( int j = i; j < k + i; j++)
sum += arr[j];
Console.Write(sum + " " );
}
}
static void Main()
{
int [] arr = new int [] { 1, 2, 3, 4, 5, 6 };
int n = arr.Length;
int k = 3;
calcSum(arr, n, k);
}
}
|
Python3
def calcSum(arr, n, k):
for i in range (n - k + 1 ):
sum = 0
for j in range (i, k + i):
sum + = arr[j]
print ( sum , end = " " )
arr = [ 1 , 2 , 3 , 4 , 5 , 6 ]
n = len (arr)
k = 3
calcSum(arr, n, k)
|
Javascript
<script>
function calcSum(arr, n, k)
{
for ( var i = 0; i <= n - k; i++) {
var sum = 0;
for ( var j = i; j < k + i; j++)
sum += arr[j];
document.write(sum + " " );
}
}
var arr = [ 1, 2, 3, 4, 5, 6 ];
var n = arr.length;
var k = 3;
calcSum(arr, n, k);
</script>
|
Performance Analysis:
- Time Complexity: As in the above approach, There are two loops, where first loop runs (N – K) times and second loop runs for K times. Hence the Time Complexity will be O(N*K).
- Auxiliary Space Complexity: As in the above approach. There is no extra space used. Hence the auxiliary space complexity will be O(1).
Efficient Approach: Using Sliding Window The idea is to use the sliding window approach to find the sum of all possible subarrays in the array.
- For each size in the range [0, K], find the sum of the first window of size K and store it in an array.
- Then for each size in the range [K, N], add the next element which contributes into the sliding window and subtract the element which pops out from the window.
// Adding the element which
// adds into the new window
sum = sum + arr[j]
// Subtracting the element which
// pops out from the window
sum = sum - arr[j-k]
where sum is the variable to store the result
arr is the given array
j is the loop variable in range [K, N]
Below is the implementation of the above approach:
C++
#include <iostream>
using namespace std;
int calcSum( int arr[], int n, int k)
{
int sum = 0;
for ( int i = 0; i < k; i++)
sum += arr[i];
cout << sum << " " ;
for ( int i = k; i < n; i++) {
sum = (sum - arr[i - k]) + arr[i];
cout << sum << " " ;
}
}
int main()
{
int arr[] = { 1, 2, 3, 4, 5, 6 };
int n = sizeof (arr) / sizeof (arr[0]);
int k = 3;
calcSum(arr, n, k);
return 0;
}
|
Java
class GFG{
static void calcSum( int arr[], int n, int k)
{
int sum = 0 ;
for ( int i = 0 ; i < k; i++)
sum += arr[i];
System.out.print(sum+ " " );
for ( int i = k; i < n; i++) {
sum = (sum - arr[i - k]) + arr[i];
System.out.print(sum+ " " );
}
}
public static void main(String[] args)
{
int arr[] = { 1 , 2 , 3 , 4 , 5 , 6 };
int n = arr.length;
int k = 3 ;
calcSum(arr, n, k);
}
}
|
Python3
def calcSum(arr, n, k):
sum = 0
for i in range ( k):
sum + = arr[i]
print ( sum ,end = " " )
for i in range (k,n):
sum = ( sum - arr[i - k]) + arr[i]
print ( sum ,end = " " )
if __name__ = = "__main__" :
arr = [ 1 , 2 , 3 , 4 , 5 , 6 ]
n = len (arr)
k = 3
calcSum(arr, n, k)
|
C#
using System;
class GFG{
static void calcSum( int []arr, int n, int k)
{
int sum = 0;
for ( int i = 0; i < k; i++)
sum += arr[i];
Console.Write(sum+ " " );
for ( int i = k; i < n; i++) {
sum = (sum - arr[i - k]) + arr[i];
Console.Write(sum + " " );
}
}
public static void Main(String[] args)
{
int []arr = { 1, 2, 3, 4, 5, 6 };
int n = arr.Length;
int k = 3;
calcSum(arr, n, k);
}
}
|
Javascript
<script>
function calcSum(arr, n, k)
{
var sum = 0;
for ( var i = 0; i < k; i++)
sum += arr[i];
document.write( sum + " " );
for ( var i = k; i < n; i++) {
sum = (sum - arr[i - k]) + arr[i];
document.write( sum + " " );
}
}
var arr = [ 1, 2, 3, 4, 5, 6 ];
var n = arr.length;
var k = 3;
calcSum(arr, n, k);
</script>
|
Performance Analysis:
- Time Complexity: As in the above approach. There is one loop which take O(N) time. Hence the Time Complexity will be O(N).
- Auxiliary Space Complexity: As in the above approach. There is no extra space used. Hence the auxiliary space complexity will be O(1).
Related Topic: Subarrays, Subsequences, and Subsets in Array
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
11 Jul, 2022
Like Article
Save Article