Sum of all proper divisors of a natural number

Given a natural number, calculate sum of all its proper divisors. A proper divisor of a natural number is the divisor that is strictly less than the number.

For example, number 20 has 5 proper divisors: 1, 2, 4, 5, 10, and the divisor summation is: 1 + 2 + 4 + 5 + 10 = 22.

Examples :



Input : num = 10
Output: 8
// proper divisors 1 + 2 + 5 = 8 

Input : num = 36
Output: 55
// proper divisors 1 + 2 + 3 + 4 + 6 + 9 + 12 + 18 = 55 

This problem has very simple solution, we all know that for any number ‘num’ all its divisors are always less than and equal to ‘num/2’ and all prime factors are always less than and equal to sqrt(num). So we iterate through ‘i’ till i<=sqrt(num) and for any 'i' if it divides 'num' , then we get two divisors 'i' and 'num/i' , continuously add these divisors but for some numbers divisors 'i' and 'num/i' will same in this case just add only one divisor , e.g; num=36 so for i=6 we will get (num/i)=6 , that's why we will at 6 in the summation only once. Finally we add one as one is divisor of all natural numbers.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of all divisors of
// a natural number
#include<bits/stdc++.h>
using namespace std;
  
// Function to calculate sum of all proper divisors
// num --> given natural number
int divSum(int num)
{
    // Final result of summation of divisors
    int result = 0;
  
    // find all divisors which divides 'num'
    for (int i=2; i<=sqrt(num); i++)
    {
        // if 'i' is divisor of 'num'
        if (num%i==0)
        {
            // if both divisors are same then add
            // it only once else add both
            if (i==(num/i))
                result += i;
            else
                result += (i + num/i);
        }
    }
  
    // Add 1 to the result as 1 is also a divisor
    return (result + 1);
}
  
// Driver program to run the case
int main()
{
    int num = 36;
    cout << divSum(num);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// JAVA program to find sum of all divisors
// of a natural number
import java.math.*;
  
class GFG {
      
    // Function to calculate sum of all proper
    // divisors num --> given natural number
    static int divSum(int num)
    {
        // Final result of summation of divisors
        int result = 0;
       
        // find all divisors which divides 'num'
        for (int i = 2; i <= Math.sqrt(num); i++)
        {
            // if 'i' is divisor of 'num'
            if (num % i == 0)
            {
                // if both divisors are same then 
                // add it only once else add both
                if (i == (num / i))
                    result += i;
                else
                    result += (i + num / i);
            }
        }
       
        // Add 1 to the result as 1 is also
        // a divisor
        return (result + 1);
    }
       
    // Driver program to run the case
    public static void main(String[] args)
    {
        int num = 36;
        System.out.println(divSum(num));
    }
}
  
/*This code is contributed by Nikita Tiwari*/

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# PYTHON program to find sum of all 
# divisors of a natural number
import math
      
# Function to calculate sum of all proper
# divisors num --> given natural number
def divSum(num) :
      
    # Final result of summation of divisors
    result = 0
      
    # find all divisors which divides 'num'
    i = 2
    while i<= (math.sqrt(num)) :
        
        # if 'i' is divisor of 'num'
        if (num % i == 0) :
        
            # if both divisors are same then
            # add it only once else add both
            if (i == (num / i)) :
                result = result + i;
            else :
                result = result +  (i + num/i);
        i = i + 1
          
    # Add 1 to the result as 1 is also 
    # a divisor
    return (result + 1);
   
# Driver program to run the case
num = 36
print (divSum(num))
  
# This code is contributed by Nikita Tiwari

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of all 
// divisorsof a natural number
using System;
  
class GFG {
      
    // Function to calculate sum of all proper
    // divisors num --> given natural number
    static int divSum(int num)
    {
          
        // Final result of summation of divisors
        int result = 0;
      
        // find all divisors which divides 'num'
        for (int i = 2; i <= Math.Sqrt(num); i++)
        {
              
            // if 'i' is divisor of 'num'
            if (num % i == 0)
            {
                  
                // if both divisors are same then 
                // add it only once else add both
                if (i == (num / i))
                    result += i;
                else
                    result += (i + num / i);
            }
        }
      
        // Add 1 to the result as 1 
        // is also a divisor
        return (result + 1);
    }
      
    // Driver Code
    public static void Main()
    {
        int num = 36;
        Console.Write(divSum(num));
    }
}
  
// This code is contributed by Nitin Mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of 
// all divisors of a natural number
  
// Function to calculate sum of 
// all proper divisors 
// num --> given natural number
function divSum($num)
{
    // Final result of 
    // summation of divisors
    $result = 0;
  
    // find all divisors 
    // which divides 'num'
    for ($i = 2; $i <= sqrt($num); 
                 $i++)
    {
        // if 'i' is divisor of 'num'
        if ($num % $i == 0)
        {
            // if both divisors are 
            // same then add it only
            // once else add both
            if ($i == ($num / $i))
                $result += $i;
            else
                $result += ($i + $num / $i);
        }
    }
  
    // Add 1 to the result as
    // 1 is also a divisor
    return ($result + 1);
}
  
// Driver Code
$num = 36;
echo(divSum($num));
  
// This code is contributed by Ajit.
?>

chevron_right



Output :

55

Please refer below post for an optimized solution and formula.
Efficient solution for sum of all the factors of a number

This article is contributed by Shashank Mishra ( Gullu ). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal, jit_t