Sum of all products of the Binomial Coefficients of two numbers up to K

Given three integers N, M and K, the task is to calculate the sum of products of Binomial Coefficients C(N, i) and C(M, K – i), where i ranges between [0, K].

\begin{*align} \sum_{i=0}^{k}C(n, i)*C(m, k-i) \label{sum} \end{*align}

Examples:

Input: N = 2, M = 2, K = 2 
Output:
Explanation: 
C(2, 0) * C(2, 2) + C(2, 1) * C(2, 1) + C(2, 2) * C(2, 0) = 1*1 + 2*2 +1*1 = 6

Input: N = 2, M = 3, K = 1 
Output:
Explanation: 
C(2, 0) * C(3, 1) + C(2, 1) * C(3, 0) = 1*3 + 2*1 = 5



Naive Approach:The simplest approach to solve this problem is to simply iterate over the range [0, K] and calculate C(N, i) and C(M, K – 1) for every i and update sum by adding their product. 

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of
// the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function returns nCr
// i.e. Binomial Coefficient
int nCr(int n, int r)
{
  
    // Initialize res with 1
    int res = 1;
  
    // Since C(n, r) = C(n, n-r)
    if (r > n - r)
        r = n - r;
  
    // Evaluating expression
    for (int i = 0; i < r; ++i) {
  
        res *= (n - i);
        res /= (i + 1);
    }
  
    return res;
}
  
// Function to calculate and
// return the sum of the products
int solve(int n, int m, int k)
{
  
    // Initialize sum to 0
    int sum = 0;
  
    // Traverse from 0 to k
    for (int i = 0; i <= k; i++)
        sum += nCr(n, i)
               * nCr(m, k - i);
  
    return sum;
}
  
// Driver Code
int main()
{
    int n = 3, m = 2, k = 2;
  
    cout << solve(n, m, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of
// the above approach
import java.util.*;
class GFG{
  
// Function returns nCr
// i.e. Binomial Coefficient
static int nCr(int n, int r)
{
  
    // Initialize res with 1
    int res = 1;
  
    // Since C(n, r) = C(n, n-r)
    if (r > n - r)
        r = n - r;
  
    // Evaluating expression
    for (int i = 0; i < r; ++i) 
    {
        res *= (n - i);
        res /= (i + 1);
    }
  
    return res;
}
  
// Function to calculate and
// return the sum of the products
static int solve(int n, int m, int k)
{
  
    // Initialize sum to 0
    int sum = 0;
  
    // Traverse from 0 to k
    for (int i = 0; i <= k; i++)
        sum += nCr(n, i)
               * nCr(m, k - i);
  
    return sum;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 3, m = 2, k = 2;
  
    System.out.print(solve(n, m, k));
}
}
  
// This code is contributed by Rohit_ranjan

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of
# the above approach
  
# Function returns nCr
# i.e. Binomial Coefficient
def nCr(n, r):
      
    # Initialize res with 1
    res = 1
      
    # Since C(n, r) = C(n, n-r)
    if r > n - r:
        r = n - r
      
    # Evaluating expression
    for i in range(r):
        res *= (n - i)
        res /= (i + 1)
      
    return res;
      
# Function to calculate and
# return the sum of the products
def solve(n, m, k):
      
    # Initialize sum to 0
    sum = 0;
      
    # Traverse from 0 to k
    for i in range(k + 1):
        sum += nCr(n, i) * nCr(m, k - i)
      
    return int(sum)
      
# Driver code 
if __name__ == '__main__'
      
    n = 3
    m = 2
    k = 2;
      
    print(solve(n, m, k))
  
# This code is contributed by jana_sayantan    

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above approach
using System;
class GFG{
  
// Function returns nCr
// i.e. Binomial Coefficient
static int nCr(int n, int r)
{
  
    // Initialize res with 1
    int res = 1;
  
    // Since C(n, r) = C(n, n-r)
    if (r > n - r)
        r = n - r;
  
    // Evaluating expression
    for (int i = 0; i < r; ++i) 
    {
        res *= (n - i);
        res /= (i + 1);
    }
  
    return res;
}
  
// Function to calculate and
// return the sum of the products
static int solve(int n, int m, int k)
{
  
    // Initialize sum to 0
    int sum = 0;
  
    // Traverse from 0 to k
    for (int i = 0; i <= k; i++)
        sum += nCr(n, i)
            * nCr(m, k - i);
  
    return sum;
}
  
// Driver Code
public static void Main(String[] args)
{
    int n = 3, m = 2, k = 2;
  
    Console.Write(solve(n, m, k));
}
}
  
// This code is contributed by Rajput-Ji 

chevron_right


Output: 

10

Time complexity: O(K2) 
Auxiliary Space: O(1)

Efficient Approach: 
The above approach can be optimized using Vandermonde’s Identity.

According to Vandermonde’s Identity, any combination of K items from a total of (N + M) items should have r items from M and (K – r) items from N items.

Therefore, the given expression is reduced to the following:

\begin{*align} \sum_{i=0}^{k}C(n, i)*C(m, k-i) = C(n+m, k) \label{sum} \end{*align}

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of
// the above approach
  
#include <bits/stdc++.h>
using namespace std;
  
// Function returns nCr
// i.e. Binomial Coefficient
int nCr(int n, int r)
{
  
    // Initialize res with 1
    int res = 1;
  
    // Since C(n, r) = C(n, n-r)
    if (r > n - r)
        r = n - r;
  
    // Evaluating expression
    for (int i = 0; i < r; ++i) {
  
        res *= (n - i);
        res /= (i + 1);
    }
  
    return res;
}
  
// Driver Code
int main()
{
    int n = 3, m = 2, k = 2;
  
    cout << nCr(n + m, k);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of
// the above approach
import java.util.*;
class GFG{
  
// Function returns nCr
// i.e. Binomial Coefficient
static int nCr(int n, int r)
{
  
    // Initialize res with 1
    int res = 1;
  
    // Since C(n, r) = C(n, n-r)
    if (r > n - r)
        r = n - r;
  
    // Evaluating expression
    for (int i = 0; i < r; ++i) 
    {
        res *= (n - i);
        res /= (i + 1);
    }
    return res;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 3, m = 2, k = 2;
  
    System.out.print(nCr(n + m, k));
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of
# the above approach
  
# Function returns nCr
# i.e. Binomial Coefficient 
def nCr(n, r):
  
    # Initialize res with 1
    res = 1
  
    # Since C(n, r) = C(n, n-r)
    if(r > n - r):
        r = n - r
  
    # Evaluating expression
    for i in range(r):
        res *= (n - i)
        res //= (i + 1)
  
    return res
  
# Driver Code
if __name__ == '__main__':
  
    n = 3
    m = 2
    k = 2
  
    # Function call
    print(nCr(n + m, k))
  
# This code is contributed by Shivam Singh

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of
// the above approach
using System;
class GFG{
  
// Function returns nCr
// i.e. Binomial Coefficient
static int nCr(int n, int r)
{
  
    // Initialize res with 1
    int res = 1;
  
    // Since C(n, r) = C(n, n-r)
    if (r > n - r)
        r = n - r;
  
    // Evaluating expression
    for (int i = 0; i < r; ++i)
    {
        res *= (n - i);
        res /= (i + 1);
    }
  
    return res;
}
  
// Driver Code
public static void Main()
{
    int n = 3, m = 2, k = 2;
    Console.Write(nCr(n + m, k));
}
}
  
// This code is contributed by Code_Mech

chevron_right


Output: 

10

Time Complexity: O(K) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Active and well versed member of Competitive Programming

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.