Given Q queries in the form of 2D array arr[][] whose every row consists of two numbers L and R which signifies the range [L, R], the task is to find the sum of all perfect squares lying in this range.
Examples:
Input: Q = 2, arr[][] = {{4, 9}, {4, 16}}
Output: 13 29
Explanation:
From 4 to 9: only 4 and 9 are perfect squares. Therefore, 4 + 9 = 13.
From 4 to 16: 4, 9 and 16 are the perfect squares. Therefore, 4 + 9 + 16 = 29.
Input: Q = 4, arr[][] = {{1, 10}, {1, 100}, {2, 25}, {4, 50}}
Output: 14 385 54 139
Approach: The idea is to use a prefix sum array. The sum all squares are precomputed and stored in an array pref[] so that every query can be answered in O(1) time. Every ‘i’th index in the pref[] array represents the sum of perfect squares from 1 to that number. Therefore, the sum of perfect squares from the given range ‘L’ to ‘R’ can be found as follows:
sum = pref[R] - pref[L - 1]
Below is the implementation of the above approach:
CPP
#include <bits/stdc++.h>
#define ll int
using namespace std;
long long pref[100010];
int isPerfectSquare( long long int x)
{
long double sr = sqrt (x);
return ((sr - floor (sr)) == 0) ? x : 0;
}
void compute()
{
for ( int i = 1; i <= 100000; ++i) {
pref[i] = pref[i - 1]
+ isPerfectSquare(i);
}
}
void printSum( int L, int R)
{
int sum = pref[R] - pref[L - 1];
cout << sum << " " ;
}
int main()
{
compute();
int Q = 4;
int arr[][2] = { { 1, 10 },
{ 1, 100 },
{ 2, 25 },
{ 4, 50 } };
for ( int i = 0; i < Q; i++) {
printSum(arr[i][0], arr[i][1]);
}
return 0;
}
|
Java
class GFG
{
static int []pref = new int [ 100010 ];
static int isPerfectSquare( int x)
{
double sr = Math.sqrt(x);
return ((sr - Math.floor(sr)) == 0 ) ? x : 0 ;
}
static void compute()
{
for ( int i = 1 ; i <= 100000 ; ++i)
{
pref[i] = pref[i - 1 ]
+ isPerfectSquare(i);
}
}
static void printSum( int L, int R)
{
int sum = pref[R] - pref[L - 1 ];
System.out.print(sum+ " " );
}
public static void main(String[] args)
{
compute();
int Q = 4 ;
int arr[][] = { { 1 , 10 },
{ 1 , 100 },
{ 2 , 25 },
{ 4 , 50 } };
for ( int i = 0 ; i < Q; i++)
{
printSum(arr[i][ 0 ], arr[i][ 1 ]);
}
}
}
|
Python3
from math import sqrt, floor
pref = [ 0 ] * 100010 ;
def isPerfectSquare(x) :
sr = sqrt(x);
rslt = x if (sr - floor(sr) = = 0 ) else 0 ;
return rslt;
def compute() :
for i in range ( 1 , 100001 ) :
pref[i] = pref[i - 1 ] + isPerfectSquare(i);
def printSum( L, R) :
sum = pref[R] - pref[L - 1 ];
print ( sum ,end = " " );
if __name__ = = "__main__" :
compute();
Q = 4 ;
arr = [ [ 1 , 10 ],
[ 1 , 100 ],
[ 2 , 25 ],
[ 4 , 50 ] ];
for i in range (Q) :
printSum(arr[i][ 0 ], arr[i][ 1 ]);
|
C#
using System;
class GFG
{
static int []pref = new int [100010];
static int isPerfectSquare( int x)
{
double sr = Math.Sqrt(x);
return ((sr - Math.Floor(sr)) == 0) ? x : 0;
}
static void compute()
{
for ( int i = 1; i <= 100000; ++i)
{
pref[i] = pref[i - 1]
+ isPerfectSquare(i);
}
}
static void printSum( int L, int R)
{
int sum = pref[R] - pref[L - 1];
Console.Write(sum+ " " );
}
public static void Main(String[] args)
{
compute();
int Q = 4;
int [,]arr = { { 1, 10 },
{ 1, 100 },
{ 2, 25 },
{ 4, 50 } };
for ( int i = 0; i < Q; i++)
{
printSum(arr[i, 0], arr[i, 1]);
}
}
}
|
Javascript
<script>
var pref= Array(100010).fill(0);
function isPerfectSquare(x)
{
var sr = Math.sqrt(x);
return ((sr - Math.floor(sr)) == 0) ? x : 0;
}
function compute()
{
for ( var i = 1; i <= 100000; ++i) {
pref[i] = pref[i - 1]
+ isPerfectSquare(i);
}
}
function printSum(L, R)
{
var sum = pref[R] - pref[L - 1];
document.write(sum + " " );
}
compute();
var Q = 4;
arr = [ [ 1, 10 ],
[ 1, 100 ],
[ 2, 25 ],
[ 4, 50 ] ];
for ( var i = 0; i < Q; i++)
printSum(arr[i][0], arr[i][1]);
</script>
|
Time Complexity: O(Q + 10000 * x)
Auxiliary Space: O(100010)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
30 Jan, 2022
Like Article
Save Article