Sum of all Perfect Squares lying in the range [L, R] for Q queries

Given Q queries in the form of 2D array arr[][] whose every row consists of two numbers L and R which signifies the range [L, R], the task is to find the sum of all perfect squares lying in this range.

Examples:

Input: Q = 2, arr[][] = {{4, 9}, {4, 16}}
Output: 13 29
Explanation:
From 4 to 9: only 4 and 9 are perfect squares. Therefore, 4 + 9 = 13.
From 4 to 16: 4, 9 and 16 are the perfect squares. Therefore, 4 + 9 + 16 = 29.



Input: Q = 4, arr[][] = {{1, 10}, {1, 100}, {2, 25}, {4, 50}}
Output: 14 385 54 139

Approach: The idea is to use a prefix sum array. The sum all squares are precomputed and stored in an array pref[] so that every query can be answered in O(1) time. Every ‘i’th index in the pref[] array represents the sum of perfect squares from 1 to that number. Therefore, the sum of perfect squares from the given range ‘L’ to ‘R’ can be found as follows:

sum = pref[R] - pref[L - 1]

Below is the implementation of the above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the sum of all
// perfect squares in the given range
  
#include <bits/stdc++.h>
#define ll int
using namespace std;
  
// Array to precompute the sum of squares
// from 1 to 100010 so that for every
// query, the answer can be returned in O(1).
long long pref[100010];
  
// Function to check if a number is
// a perfect square or not
int isPerfectSquare(long long int x)
{
    // Find floating point value of
    // square root of x.
    long double sr = sqrt(x);
  
    // If square root is an integer
    return ((sr - floor(sr)) == 0) ? x : 0;
}
  
// Function to precompute the perfect
// squares upto 100000.
void compute()
{
    for (int i = 1; i <= 100000; ++i) {
        pref[i] = pref[i - 1]
                  + isPerfectSquare(i);
    }
}
  
// Function to print the sum for each query
void printSum(int L, int R)
{
    int sum = pref[R] - pref[L - 1];
    cout << sum << " ";
}
  
// Driver code
int main()
{
    // To calculate the precompute function
    compute();
  
    int Q = 4;
    int arr[][2] = { { 1, 10 },
                     { 1, 100 },
                     { 2, 25 },
                     { 4, 50 } };
  
    // Calling the printSum function
    // for every query
    for (int i = 0; i < Q; i++) {
        printSum(arr[i][0], arr[i][1]);
    }
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum of all
// perfect squares in the given range
class GFG
{
  
// Array to precompute the sum of squares
// from 1 to 100010 so that for every
// query, the answer can be returned in O(1).
static int []pref = new int[100010];
  
// Function to check if a number is
// a perfect square or not
static int isPerfectSquare(int x)
{
    // Find floating point value of
    // square root of x.
    double sr = Math.sqrt(x);
  
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0) ? x : 0;
}
  
// Function to precompute the perfect
// squares upto 100000.
static void compute()
{
    for (int i = 1; i <= 100000; ++i) 
    {
        pref[i] = pref[i - 1]
                + isPerfectSquare(i);
    }
}
  
// Function to print the sum for each query
static void printSum(int L, int R)
{
    int sum = pref[R] - pref[L - 1];
    System.out.print(sum+ " ");
}
  
// Driver code
public static void main(String[] args)
{
    // To calculate the precompute function
    compute();
  
    int Q = 4;
    int arr[][] = { { 1, 10 },
                    { 1, 100 },
                    { 2, 25 },
                    { 4, 50 } };
  
    // Calling the printSum function
    // for every query
    for (int i = 0; i < Q; i++)
    {
        printSum(arr[i][0], arr[i][1]);
    }
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the sum of all 
# perfect squares in the given range 
from math import sqrt, floor
  
# Array to precompute the sum of squares 
# from 1 to 100010 so that for every 
# query, the answer can be returned in O(1). 
pref = [0]*100010
  
# Function to check if a number is 
# a perfect square or not 
def isPerfectSquare(x) :
      
    # Find floating point value of
    # square root of x.
    sr = sqrt(x);
      
    # If square root is an integer
    rslt = x if (sr - floor(sr) == 0) else 0;
    return rslt; 
  
# Function to precompute the perfect 
# squares upto 100000. 
def compute() :
  
    for i in range(1 , 100001) :
        pref[i] = pref[i - 1] + isPerfectSquare(i); 
  
# Function to print the sum for each query 
def printSum( L, R) : 
  
    sum = pref[R] - pref[L - 1]; 
    print(sum ,end= " "); 
  
# Driver code 
if __name__ == "__main__"
  
    # To calculate the precompute function 
    compute(); 
  
    Q = 4
    arr = [ [ 1, 10 ], 
            [ 1, 100 ], 
            [ 2, 25 ], 
            [ 4, 50 ] ]; 
  
    # Calling the printSum function 
    # for every query 
    for i in range(Q) :
        printSum(arr[i][0], arr[i][1]); 
  
# This code is contributed by AnkitRai01

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the sum of all
// perfect squares in the given range
using System;
  
class GFG
{
  
// Array to precompute the sum of squares
// from 1 to 100010 so that for every
// query, the answer can be returned in O(1).
static int []pref = new int[100010];
  
// Function to check if a number is
// a perfect square or not
static int isPerfectSquare(int x)
{
    // Find floating point value of
    // square root of x.
    double sr = Math.Sqrt(x);
  
    // If square root is an integer
    return ((sr - Math.Floor(sr)) == 0) ? x : 0;
}
  
// Function to precompute the perfect
// squares upto 100000.
static void compute()
{
    for (int i = 1; i <= 100000; ++i) 
    {
        pref[i] = pref[i - 1]
                + isPerfectSquare(i);
    }
}
  
// Function to print the sum for each query
static void printSum(int L, int R)
{
    int sum = pref[R] - pref[L - 1];
    Console.Write(sum+ " ");
}
  
// Driver code
public static void Main(String[] args)
{
    // To calculate the precompute function
    compute();
  
    int Q = 4;
    int [,]arr = { { 1, 10 },
                    { 1, 100 },
                    { 2, 25 },
                    { 4, 50 } };
  
    // Calling the printSum function
    // for every query
    for (int i = 0; i < Q; i++)
    {
        printSum(arr[i, 0], arr[i, 1]);
    }
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

14 385 54 139

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : princiraj1992, AnkitRai01