# Sum of all perfect numbers present in an Linked list

Given an Linked list containing N positive integer, the task is to find the sum of all the perfect numbers from the list.

A number is perfect if is equal to the sum of its proper divisors i.e. the sum of its positive divisors excluding the number itself.

Examples:

Input: L1 = 3 -> 6 -> 9
Output:6
Proper divisor sum of 3 = 1
ans=0
Proper divisor sum of 6 = 1 + 2 + 3 = 6
ans=6;
Proper divisor sum of 9 = 1 + 3 = 4
ans=6;

Input: L1 = 17 -> 6 -> 10 -> 6 -> 4
Output: 12

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Initialise sum = 0 and for every node of the list, find the sum of its proper divisors say sumFactors. If cur_node = sumFactors then update the resultant sum as sum = sum + cur_node. Print the sum in the end.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Node of the singly linked list ` `struct` `Node { ` `    ``int` `data; ` `    ``Node* next; ` `}; ` ` `  `// Function to insert a node ` `// at the beginning of ` `// the singly Linked List ` `void` `push(Node** head_ref, ``int` `new_data) ` `{ ` `    ``// allocate node ` `    ``Node* new_node ` `        ``= (Node*)``malloc``( ` `            ``sizeof``(``struct` `Node)); ` ` `  `    ``// put in the data ` `    ``new_node->data = new_data; ` ` `  `    ``// link the old list off the new node ` `    ``new_node->next = (*head_ref); ` ` `  `    ``// move the head to point ` `    ``// to the new node ` `    ``(*head_ref) = new_node; ` `} ` `// Function to return the sum of ` `// all the proper factors of n ` `int` `sumOfFactors(``int` `n) ` `{ ` `    ``int` `sum = 0; ` `    ``for` `(``int` `f = 1; f <= n / 2; f++) { ` ` `  `        ``// f is the factor of n ` `        ``if` `(n % f == 0) { ` `            ``sum += f; ` `        ``} ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Function to return the required sum ` `int` `getSum(Node* head_1) ` `{ ` ` `  `    ``// To store the sum ` `    ``int` `sum = 0; ` `    ``Node* ptr = head_1; ` `    ``while` `(ptr != NULL) { ` ` `  `        ``// If current element is non-zero ` `        ``// and equal to the sum ` `        ``// of proper factors of itself ` `        ``if` `(ptr->data > 0 ` `            ``&& ptr->data ` `                   ``== sumOfFactors(ptr->data)) { ` `            ``sum += ptr->data; ` `        ``} ` `        ``ptr = ptr->next; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``// start with the empty list ` `    ``Node* head1 = NULL; ` ` `  `    ``// create the linked list ` `    ``push(&head1, 17); ` `    ``push(&head1, 6); ` `    ``push(&head1, 10); ` `    ``push(&head1, 6); ` `    ``push(&head1, 4); ` `    ``int` `k = getSum(head1); ` `    ``cout << k; ` `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG{ ` ` `  `// Node of the singly linked list ` `static` `class` `Node  ` `{ ` `    ``int` `data; ` `    ``Node next; ` `}; ` ` `  `// Function to insert a node ` `// at the beginning of ` `// the singly Linked List ` `static` `Node push(Node head_ref,  ` `                 ``int` `new_data) ` `{ ` `     `  `    ``// Allocate node ` `    ``Node new_node= ``new` `Node(); ` ` `  `    ``// Put in the data ` `    ``new_node.data = new_data; ` ` `  `    ``// Link the old list off the new node ` `    ``new_node.next = head_ref; ` ` `  `    ``// Move the head to point ` `    ``// to the new node ` `    ``head_ref = new_node; ` `     `  `    ``return` `head_ref; ` `} ` ` `  `// Function to return the sum of ` `// all the proper factors of n ` `static` `int` `sumOfFactors(``int` `n) ` `{ ` `    ``int` `sum = ``0``; ` `     `  `    ``for``(``int` `f = ``1``; f <= n / ``2``; f++) ` `    ``{ ` ` `  `       ``// f is the factor of n ` `       ``if` `(n % f == ``0``) ` `       ``{ ` `           ``sum += f; ` `       ``} ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Function to return the required sum ` `static` `int` `getSum(Node head_1) ` `{ ` ` `  `    ``// To store the sum ` `    ``int` `sum = ``0``; ` `     `  `    ``Node ptr = head_1; ` `     `  `    ``while` `(ptr != ``null``)  ` `    ``{ ` ` `  `        ``// If current element is non-zero ` `        ``// and equal to the sum of proper ` `        ``//  factors of itself ` `        ``if` `(ptr.data > ``0` `&& ptr.data ==  ` `                ``sumOfFactors(ptr.data)) ` `        ``{ ` `            ``sum += ptr.data; ` `        ``} ` `        ``ptr = ptr.next; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `     `  `    ``// Start with the empty list ` `    ``Node head = ``new` `Node(); ` ` `  `    ``// Create the linked list ` `    ``head = push(head, ``17``); ` `    ``head = push(head, ``6``); ` `    ``head = push(head, ``10``); ` `    ``head = push(head, ``6``); ` `    ``head = push(head, ``4``); ` `     `  `    ``int` `k = getSum(head); ` `     `  `    ``System.out.print(k); ` `} ` `} ` ` `  `// This code is contributed by amal kumar choubey `

## C#

 `// C# implementation of the approach ` `using` `System; ` `class` `GFG{ ` ` `  `// Node of the singly linked list ` `class` `Node  ` `{ ` `    ``public` `int` `data; ` `    ``public` `Node next; ` `}; ` ` `  `// Function to insert a node ` `// at the beginning of ` `// the singly Linked List ` `static` `Node push(Node head_ref,  ` `                 ``int` `new_data) ` `{ ` `     `  `    ``// Allocate node ` `    ``Node new_node= ``new` `Node(); ` ` `  `    ``// Put in the data ` `    ``new_node.data = new_data; ` ` `  `    ``// Link the old list off the new node ` `    ``new_node.next = head_ref; ` ` `  `    ``// Move the head to point ` `    ``// to the new node ` `    ``head_ref = new_node; ` `     `  `    ``return` `head_ref; ` `} ` ` `  `// Function to return the sum of ` `// all the proper factors of n ` `static` `int` `sumOfFactors(``int` `n) ` `{ ` `    ``int` `sum = 0; ` `     `  `    ``for``(``int` `f = 1; f <= n / 2; f++) ` `    ``{ ` ` `  `        ``// f is the factor of n ` `        ``if` `(n % f == 0) ` `        ``{ ` `            ``sum += f; ` `        ``} ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Function to return the required sum ` `static` `int` `getSum(Node head_1) ` `{ ` ` `  `    ``// To store the sum ` `    ``int` `sum = 0; ` `     `  `    ``Node ptr = head_1; ` `     `  `    ``while` `(ptr != ``null``)  ` `    ``{ ` ` `  `        ``// If current element is non-zero ` `        ``// and equal to the sum of proper ` `        ``// factors of itself ` `        ``if` `(ptr.data > 0 && ptr.data ==  ` `               ``sumOfFactors(ptr.data)) ` `        ``{ ` `            ``sum += ptr.data; ` `        ``} ` `        ``ptr = ptr.next; ` `    ``} ` `    ``return` `sum; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `     `  `    ``// Start with the empty list ` `    ``Node head = ``new` `Node(); ` ` `  `    ``// Create the linked list ` `    ``head = push(head, 17); ` `    ``head = push(head, 6); ` `    ``head = push(head, 10); ` `    ``head = push(head, 6); ` `    ``head = push(head, 4); ` `     `  `    ``int` `k = getSum(head); ` `     `  `    ``Console.Write(k); ` `} ` `} ` ` `  `// This code is contributed by amal kumar choubey `

Output:

```12
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : Amal Kumar Choubey