Skip to content
Related Articles

Related Articles

Improve Article

Sum of all perfect numbers present in an array

  • Last Updated : 26 Apr, 2021

Given an array arr[] containing N positive integer. The task is to find the sum of all the perfect numbers from the array. 
A number is perfect if is equal to the sum of its proper divisors i.e. the sum of its positive divisors excluding the number itself.
 

Examples:

Input: arr[] = {3, 6, 9} 
Output: 6
Proper divisor sum of 3 = 1 
Proper divisor sum of 6 = 1 + 2 + 3 = 6 
Proper divisor sum of 9 = 1 + 3 = 4
Input: arr[] = {17, 6, 10, 6, 4} 
Output: 12 
 

Approach: Initialize sum = 0 and for every element of the array, find the sum of its proper divisors say sumFactors. If arr[i] = sumFactors then update the resultant sum as sum = sum + arr[i]. Print the sum in the end.
 

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
// Function to return the sum of
// all the proper factors of n
int sumOfFactors(int n)
{
    int sum = 0;
    for (int f = 1; f <= n / 2; f++)
    {
 
        // f is the factor of n
        if (n % f == 0)
        {
            sum += f;
        }
    }
    return sum;
}
 
// Function to return the required sum
int getSum(int arr[], int n)
{
 
    // To store the sum
    int sum = 0;
    for (int i = 0; i < n; i++)
    {
 
        // If current element is non-zero and equal
        // to the sum of proper factors of itself
        if (arr[i] > 0 &&
            arr[i] == sumOfFactors(arr[i]))
        {
            sum += arr[i];
        }
    }
    return sum;
}
 
// Driver code
int main()
{
    int arr[10] = { 17, 6, 10, 6, 4 };
     
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << (getSum(arr, n));
    return 0;
}

Java




// Java implementation of the above approach
class GFG {
 
    // Function to return the sum of
    // all the proper factors of n
    static int sumOfFactors(int n)
    {
        int sum = 0;
        for (int f = 1; f <= n / 2; f++) {
 
            // f is the factor of n
            if (n % f == 0) {
                sum += f;
            }
        }
        return sum;
    }
 
    // Function to return the required sum
    static int getSum(int[] arr, int n)
    {
 
        // To store the sum
        int sum = 0;
        for (int i = 0; i < n; i++) {
 
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int[] arr = { 17, 6, 10, 6, 4 };
        int n = arr.length;
        System.out.print(getSum(arr, n));
    }
}

Python3




# Python3 implementation of the above approach
 
# Function to return the sum of
# all the proper factors of n
def sumOfFactors(n):
 
    sum = 0
    for f in range(1, n // 2 + 1):
 
        # f is the factor of n
        if (n % f == 0):
            sum += f
         
    return sum
 
# Function to return the required sum
def getSum(arr, n):
     
    # To store the sum
    sum = 0
    for i in range(n):
 
        # If current element is non-zero and equal
        # to the sum of proper factors of itself
        if (arr[i] > 0 and
            arr[i] == sumOfFactors(arr[i])) :
            sum += arr[i]
     
    return sum
 
# Driver code
arr = [17, 6, 10, 6, 4]
 
n = len(arr)
print(getSum(arr, n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to return the sum of
    // all the proper factors of n
    static int sumOfFactors(int n)
    {
        int sum = 0;
        for (int f = 1; f <= n / 2; f++)
        {
 
            // f is the factor of n
            if (n % f == 0)
            {
                sum += f;
            }
        }
        return sum;
    }
 
    // Function to return the required sum
    static int getSum(int[] arr, int n)
    {
 
        // To store the sum
        int sum = 0;
        for (int i = 0; i < n; i++)
        {
 
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i]))
            {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
    static public void Main ()
    {
        int[] arr = { 17, 6, 10, 6, 4 };
        int n = arr.Length;
        Console.WriteLine(getSum(arr, n));
    }
}
 
// This code is contributed by @ajit_0023

Javascript




<script>
// Java  script implementation of the above approach
 
    // Function to return the sum of
    // all the proper factors of n
    function sumOfFactors( n)
    {
        let sum = 0;
        for (let f = 1; f <= n / 2; f++) {
 
            // f is the factor of n
            if (n % f == 0) {
                sum += f;
            }
        }
        return sum;
    }
 
    // Function to return the required sum
    function getSum( arr,  n)
    {
 
        // To store the sum
        let sum = 0;
        for (let i = 0; i < n; i++) {
 
            // If current element is non-zero and equal
            // to the sum of proper factors of itself
            if (arr[i] > 0 && arr[i] == sumOfFactors(arr[i])) {
                sum += arr[i];
            }
        }
        return sum;
    }
 
    // Driver code
        let arr = [ 17, 6, 10, 6, 4 ];
        let  n = arr.length;
        document.write(getSum(arr, n));
     
//contributed by bobby
 
</script>
Output: 
12

 

Attention reader! Don’t stop learning now. Participate in the Scholorship Test for First-Step-to-DSA Course for Class 9 to 12 students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :