Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Sum of all ordered pair-products from a given array

  • Difficulty Level : Easy
  • Last Updated : 07 May, 2021

Given an array arr[] of size N, the task is to find the sum of all products of ordered pairs that can be generated from the given array elements.
Examples:

Input: arr[] ={1, 2, 3}
Output: 36
Explanation:All possible pairs are {(1, 1), {1, 2}, {1, 3}, {2, 1}, {2, 2}, {2, 3}, {3, 1}, {3, 2}, {3, 3}}. Therefore, the sum of product of all pairs is 36.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : arr[]={3, 4, 1, 2, 5}
Output: 225 



Naive Approach: The simplest approach is to iterate through all possible pairs from the given array calculate the sum of product of all pair-products. 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Efficient Approach: The above approach can be optimized based on the following observations:

arr[]={a1, a2, a3, a4 ….., an-1, an}
Now, sum of product of all  possible pairs is =
{
(a1 * a1) + (a1 * a2) + (a1 * a3) + …..+ (a1 * an-1) + (a1, an) +
(a2 * a1) + (a2 * a2) + (a2 * a3) + ….. + (a2 * an-1) + (a2 * an) +
(a3 * a1) + (a3 * a2) + (a3 * a3) + ….. + (a3 * an-1) + (a3, an) +
…………………………………………………………………………..
(an, * a1) + (an * a2), +(an * a3) + ….. + (an * an-1) + (an, an)
}

={
(a1 + a2+  a3 + …..+ an-1 +  an * (a1 + a2+  a3 + …..+ an-1 +  an
}
=(a1 + a2+  a3 + …..+ an-1 +  an )2

Follow the steps below to solve the problem: 

  1. Initialize the variable, res=0 to store the sum of array elements
  2. Traverse the array, arr[] and add each element of the array to res.
  3. Finally, print the square of the res as the required answer.

Below is the implementation of the above approach:

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the
// sum of all pair-products
int sumOfProd(int arr[], int N)
{
    // Stores sum of array
    int sum = 0;
 
    for (int i = 0; i < N; i++) {
 
        // Update sum of the array
        sum += arr[i];
    }
 
    return sum * sum;
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 3, 1, 5, 4 };
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << sumOfProd(arr, N);
    return 0;
}

Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
 
// Function to calculate the
// sum of all pair-products
static int sumOfProd(int arr[], int N)
{
     
    // Stores sum of array
    int sum = 0;
 
    for(int i = 0; i < N; i++)
    {
         
        // Update sum of the array
        sum += arr[i];
    }
    return sum * sum;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 3, 1, 5, 4 };
    int N = arr.length;
     
    System.out.print(sumOfProd(arr, N));
}
}
 
// This code is contributed by offbeat

Python3




# Python3 program to implement
# the above approach 
 
# Function to calculate the
# sum of all pair-products
def sumOfProd(arr, N):
     
    # Stores sum of array
    sum = 0
 
    for i in range(N):
         
        # Update sum of the array
        sum += arr[i]
 
    return sum * sum
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 2, 3, 1, 5, 4 ]
    N = len(arr)
     
    print(sumOfProd(arr, N))
 
# This code is contributed by SURENDRA_GANGWAR

C#




// C# program to implement 
// the above approach  
using System;
 
class GFG{
     
// Function to calculate the 
// sum of all pair-products 
static int sumOfProd(int[] arr, int N) 
     
    // Stores sum of array 
    int sum = 0; 
   
    for(int i = 0; i < N; i++)
    {
         
        // Update sum of the array 
        sum += arr[i]; 
    
    return sum * sum; 
}  
 
// Driver code
static void Main()
{
    int[] arr = { 2, 3, 1, 5, 4 }; 
    int N = arr.Length; 
     
    Console.WriteLine(sumOfProd(arr, N));
}
}
 
// This code is contributed by divyeshrabadiya07

Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to calculate the
// sum of all pair-products
function sumOfProd(arr, N)
{
      
    // Stores sum of array
    let sum = 0;
  
    for(let i = 0; i < N; i++)
    {
          
        // Update sum of the array
        sum += arr[i];
    }
    return sum * sum;
}
  
// Driver Code
 
       let arr = [ 2, 3, 1, 5, 4 ];
    let N = arr.length;
      
    document.write(sumOfProd(arr, N));
 
// This code is contributed by souravghosh0416.
</script>

Output:

225

Time Complexity: O(N)

Auxiliary Space: O(1)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!