Skip to content
Related Articles

Related Articles

Improve Article
Sum of all numbers in the given range which are divisible by M
  • Difficulty Level : Medium
  • Last Updated : 21 Apr, 2021

Given three numbers A, B and M such that A < B, the task is to find the sum of numbers divisible by M in the range [A, B].

Examples: 

Input: A = 25, B = 100, M = 30 
Output: 180 
Explanation: 
In the given range [25, 100] 30, 60 and 90 are the numbers which are divisible by M = 30 
Therefore, sum of these numbers = 180.

Input: A = 6, B = 15, M = 3 
Output: 42 
Explanation: 
In the given range [6, 15] 6, 9, 12 and 15 are the numbers which are divisible by M = 3. 
Therefore, sum of these numbers = 42. 
 

Naive Approach: Check for each number in the range [A, B] if they are divisible by M or not. And finally, add all the numbers that are divisible by M.



Below is the implementation of the above approach: 

C++




// C++ program to find the sum of numbers
// divisible by M in the given range
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the sum of numbers
// divisible by M in the given range
int sumDivisibles(int A, int B, int M)
{
    // Variable to store the sum
    int sum = 0;
 
    // Running a loop from A to B and check
    // if a number is divisible by i.
    for (int i = A; i <= B; i++)
 
        // If the number is divisible,
        // then add it to sum
        if (i % M == 0)
            sum += i;
 
    // Return the sum
    return sum;
}
 
// Driver code
int main()
{
    // A and B define the range
    // M is the dividend
    int A = 6, B = 15, M = 3;
 
    // Printing the result
    cout << sumDivisibles(A, B, M) << endl;
 
    return 0;
}

Java




// Java program to find the sum of numbers
// divisible by M in the given range
import java.util.*;
 
class GFG{
  
// Function to find the sum of numbers
// divisible by M in the given range
static int sumDivisibles(int A, int B, int M)
{
    // Variable to store the sum
    int sum = 0;
  
    // Running a loop from A to B and check
    // if a number is divisible by i.
    for (int i = A; i <= B; i++)
  
        // If the number is divisible,
        // then add it to sum
        if (i % M == 0)
            sum += i;
  
    // Return the sum
    return sum;
}
  
// Driver code
public static void main(String[] args)
{
    // A and B define the range
    // M is the dividend
    int A = 6, B = 15, M = 3;
  
    // Printing the result
    System.out.print(sumDivisibles(A, B, M) +"\n");
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python 3 program to find the sum of numbers
# divisible by M in the given range
 
# Function to find the sum of numbers
# divisible by M in the given range
def sumDivisibles(A, B, M):
 
    # Variable to store the sum
    sum = 0
 
    # Running a loop from A to B and check
    # if a number is divisible by i.
    for i in range(A, B + 1):
 
        # If the number is divisible,
        # then add it to sum
        if (i % M == 0):
            sum += i
 
    # Return the sum
    return sum
 
# Driver code
if __name__=="__main__":
     
    # A and B define the range
    # M is the dividend
    A = 6
    B = 15
    M = 3
 
    # Printing the result
    print(sumDivisibles(A, B, M))
     
# This code is contributed by chitranayal

C#




// C# program to find the sum of numbers
// divisible by M in the given range
using System;
 
class GFG{
   
// Function to find the sum of numbers
// divisible by M in the given range
static int sumDivisibles(int A, int B, int M)
{
    // Variable to store the sum
    int sum = 0;
   
    // Running a loop from A to B and check
    // if a number is divisible by i.
    for (int i = A; i <= B; i++)
   
        // If the number is divisible,
        // then add it to sum
        if (i % M == 0)
            sum += i;
   
    // Return the sum
    return sum;
}
   
// Driver code
public static void Main(String[] args)
{
    // A and B define the range
    // M is the dividend
    int A = 6, B = 15, M = 3;
   
    // Printing the result
    Console.Write(sumDivisibles(A, B, M) +"\n");
}
}
  
// This code is contributed by sapnasingh4991

Javascript




<script>
 
// Javascript program to find the sum of numbers
// divisible by M in the given range
 
// Function to find the sum of numbers
// divisible by M in the given range
function sumDivisibles(A, B, M)
{
     
    // Variable to store the sum
    var sum = 0;
 
    // Running a loop from A to B and check
    // if a number is divisible by i.
    for(var i = A; i <= B; i++)
     
        // If the number is divisible,
        // then add it to sum
        if (i % M == 0)
            sum += i;
 
    // Return the sum
    return sum;
}
 
// Driver code
 
// A and B define the range
// M is the dividend
var A = 6, B = 15, M = 3;
 
// Printing the result
document.write(sumDivisibles(A, B, M));
 
// This code is contributed by rrrtnx
 
</script>
Output: 
42

 

Time Complexity: O(N).
Efficient Approach: The idea is to use the concept of Arithmetic Progression and divisibility. 

  • Upon visualization, the multiples of M can be seen to form a series
M, 2M, 3M, ...
  • If we can find the value of K which is the first term in the range [A, B] which is divisible by M, then directly, the series would be:
K, (K + M), (K + 2M), ------  (K + (N - 1)*M )
where N is the number of elements in the series. 
N = B / M - (A - 1)/ M
  • Therefore, the sum of the elements can be found out by:
sum = N * ( (first term + last term) / 2)

Below is the implementation of the above approach: 

C++




// C++ program to find the sum of numbers
// divisible by M in the given range
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the largest number
// smaller than or equal to N
// that is divisible by K
int findSmallNum(int N, int K)
{
    // Finding the remainder when N is
    // divided by K
    int rem = N % K;
 
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
 
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N - rem;
}
 
// Function to find the smallest number
// greater than or equal to N
// that is divisible by K
int findLargeNum(int N, int K)
{
    // Finding the remainder when N is
    // divided by K
    int rem = (N + K) % K;
 
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
 
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N + K - rem;
}
 
// Function to find the sum of numbers
// divisible by M in the given range
int sumDivisibles(int A, int B, int M)
{
    // Variable to store the sum
    int sum = 0;
    int first = findSmallNum(A, M);
    int last = findLargeNum(B, M);
 
    // To bring the smallest and largest
    // numbers in the range [A, B]
    if (first < A)
        first += M;
 
    if (last > B)
        first -= M;
 
    // To count the number of terms in the AP
    int n = (B / M) - (A - 1) / M;
 
    // Sum of n terms of an AP
    return n * (first + last) / 2;
}
 
// Driver code
int main()
{
    // A and B define the range,
    // M is the dividend
    int A = 6, B = 15, M = 3;
 
    // Printing the result
    cout << sumDivisibles(A, B, M);
 
    return 0;
}

Java




// Java program to find the sum of numbers
// divisible by M in the given range
 
 
class GFG{
  
// Function to find the largest number
// smaller than or equal to N
// that is divisible by K
static int findSmallNum(int N, int K)
{
    // Finding the remainder when N is
    // divided by K
    int rem = N % K;
  
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
  
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N - rem;
}
  
// Function to find the smallest number
// greater than or equal to N
// that is divisible by K
static int findLargeNum(int N, int K)
{
    // Finding the remainder when N is
    // divided by K
    int rem = (N + K) % K;
  
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
  
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N + K - rem;
}
  
// Function to find the sum of numbers
// divisible by M in the given range
static int sumDivisibles(int A, int B, int M)
{
    // Variable to store the sum
    int first = findSmallNum(A, M);
    int last = findLargeNum(B, M);
  
    // To bring the smallest and largest
    // numbers in the range [A, B]
    if (first < A)
        first += M;
  
    if (last > B)
        first -= M;
  
    // To count the number of terms in the AP
    int n = (B / M) - (A - 1) / M;
  
    // Sum of n terms of an AP
    return n * (first + last) / 2;
}
  
// Driver code
public static void main(String[] args)
{
    // A and B define the range,
    // M is the dividend
    int A = 6, B = 15, M = 3;
  
    // Printing the result
    System.out.print(sumDivisibles(A, B, M));
  
}
}
 
// This code contributed by Princi Singh

Python3




# Python3 program to find the sum of numbers
# divisible by M in the given range
 
# Function to find the largest number
# smaller than or equal to N
# that is divisible by K
def findSmallNum(N, K):
     
    # Finding the remainder when N is
    # divided by K
    rem = N % K
 
    # If the remainder is 0, then the
    # number itself is divisible by K
    if (rem == 0):
        return N
    else:
        # Else, then the difference between
        # N and remainder is the largest number
        # which is divisible by K
        return N - rem
 
# Function to find the smallest number
# greater than or equal to N
# that is divisible by K
def findLargeNum(N, K):
     
    # Finding the remainder when N is
    # divided by K
    rem = (N + K) % K
 
    # If the remainder is 0, then the
    # number itself is divisible by K
    if (rem == 0):
        return N
    else:
        # Else, then the difference between
        # N and remainder is the largest number
        # which is divisible by K
        return N + K - rem
 
# Function to find the sum of numbers
# divisible by M in the given range
def sumDivisibles(A, B, M):
     
    # Variable to store the sum
    sum = 0
    first = findSmallNum(A, M)
    last = findLargeNum(B, M)
 
    # To bring the smallest and largest
    # numbers in the range [A, B]
    if (first < A):
        first += M
 
    if (last > B):
        first -= M
 
    # To count the number of terms in the AP
    n = (B // M) - (A - 1) // M
 
    # Sum of n terms of an AP
    return n * (first + last) // 2
 
# Driver code
if __name__ == '__main__':
     
    # A and B define the range,
    # M is the dividend
    A = 6
    B = 15
    M = 3
 
    # Printing the result
    print(sumDivisibles(A, B, M))
 
# This code is contributed by Surendra_Gangwar

C#




// C# program to find the sum of numbers
// divisible by M in the given range
using System;
using System.Collections.Generic;
 
class GFG{
   
// Function to find the largest number
// smaller than or equal to N
// that is divisible by K
static int findSmallNum(int N, int K)
{
    // Finding the remainder when N is
    // divided by K
    int rem = N % K;
   
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
   
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N - rem;
}
   
// Function to find the smallest number
// greater than or equal to N
// that is divisible by K
static int findLargeNum(int N, int K)
{
    // Finding the remainder when N is
    // divided by K
    int rem = (N + K) % K;
   
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
   
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N + K - rem;
}
   
// Function to find the sum of numbers
// divisible by M in the given range
static int sumDivisibles(int A, int B, int M)
{
    // Variable to store the sum
    int first = findSmallNum(A, M);
    int last = findLargeNum(B, M);
   
    // To bring the smallest and largest
    // numbers in the range [A, B]
    if (first < A)
        first += M;
   
    if (last > B)
        first -= M;
   
    // To count the number of terms in the AP
    int n = (B / M) - (A - 1) / M;
   
    // Sum of n terms of an AP
    return n * (first + last) / 2;
}
   
// Driver code
public static void Main(String[] args)
{
    // A and B define the range,
    // M is the dividend
    int A = 6, B = 15, M = 3;
   
    // Printing the result
    Console.Write(sumDivisibles(A, B, M));
   
}
}
  
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript program to find the sum of numbers
// divisible by M in the given range
 
// Function to find the largest number
// smaller than or equal to N
// that is divisible by K
function findSmallNum(N, K)
{
     
    // Finding the remainder when N is
    // divided by K
    var rem = N % K;
 
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
 
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N - rem;
}
 
// Function to find the smallest number
// greater than or equal to N
// that is divisible by K
function findLargeNum(N, K)
{
     
    // Finding the remainder when N is
    // divided by K
    var rem = (N + K) % K;
 
    // If the remainder is 0, then the
    // number itself is divisible by K
    if (rem == 0)
        return N;
    else
 
        // Else, then the difference between
        // N and remainder is the largest number
        // which is divisible by K
        return N + K - rem;
}
 
// Function to find the sum of numbers
// divisible by M in the given range
function sumDivisibles(A, B, M)
{
     
    // Variable to store the sum
    var sum = 0;
    var first = findSmallNum(A, M);
    var last = findLargeNum(B, M);
 
    // To bring the smallest and largest
    // numbers in the range [A, B]
    if (first < A)
        first += M;
 
    if (last > B)
        first -= M;
 
    // To count the number of terms in the AP
    var n = (parseInt(B / M) -
             parseInt((A - 1) / M));
 
    // Sum of n terms of an AP
    return n * (first + last) / 2;
}
 
// Driver code
 
// A and B define the range,
// M is the dividend
var A = 6, B = 15, M = 3;
 
// Printing the result
document.write( sumDivisibles(A, B, M));
 
// This code is contributed by rutvik_56
 
</script>
Output: 
42

 

Time Complexity: O(1).
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :