# Sum of minimum and maximum elements of all subarrays of size k.

• Difficulty Level : Hard
• Last Updated : 06 Jul, 2022

Given an array of both positive and negative integers, the task is to compute sum of minimum and maximum elements of all sub-array of size k.

Examples:

Input : arr[] = {2, 5, -1, 7, -3, -1, -2}
K = 4
Output : 18
Explanation : Subarrays of size 4 are :
{2, 5, -1, 7},   min + max = -1 + 7 = 6
{5, -1, 7, -3},  min + max = -3 + 7 = 4
{-1, 7, -3, -1}, min + max = -3 + 7 = 4
{7, -3, -1, -2}, min + max = -3 + 7 = 4
Sum of all min & max = 6 + 4 + 4 + 4
= 18

This problem is mainly an extension of below problem.
Maximum of all subarrays of size k

Method 1 (Simple): Run two loops to generate all subarrays of size k and find maximum and minimum values. Finally, return sum of all maximum and minimum elements.
Time taken by this solution is O(n*k).

Method 2 (Efficient using Dequeue): The idea is to use Dequeue data structure and sliding window concept. We create two empty double-ended queues of size k (‘S’ , ‘G’) that only store indices of elements of current window that are not useless. An element is useless if it can not be maximum or minimum of next subarrays.

a) In deque 'G', we maintain decreasing order of
values from front to rear
b) In deque 'S', we maintain increasing order of
values from front to rear

1) First window size K
1.1) For deque 'G', if current element is greater
than rear end element, we remove rear while
current is greater.
1.2) For deque 'S', if current element is smaller
than rear end element, we just pop it while
current is smaller.
1.3) insert current element in both deque 'G' 'S'

2) After step 1, front of 'G' contains maximum element
of first window and front of 'S' contains minimum
element of first window. Remaining elements of G
and S may store maximum/minimum for subsequent
windows.

3) After that we do traversal for rest array elements.
3.1) Front element of deque 'G' is greatest and 'S'
is smallest element of previous window
3.2) Remove all elements which are out of this
window [remove element at front of queue ]
3.3) Repeat steps 1.1 , 1.2 ,1.3

4) Return sum of minimum and maximum element of all
sub-array size k.

Below is implementation of above idea

## C++

 // C++ program to find sum of all minimum and maximum// elements Of Sub-array Size k.#includeusing namespace std; // Returns sum of min and max element of all subarrays// of size kint SumOfKsubArray(int arr[] , int n , int k){    int sum = 0;  // Initialize result     // The queue will store indexes of useful elements    // in every window    // In deque 'G' we maintain decreasing order of    // values from front to rear    // In deque 'S' we  maintain increasing order of    // values from front to rear    deque< int > S(k), G(k);     // Process first window of size K    int i = 0;    for (i = 0; i < k; i++)    {        // Remove all previous greater elements        // that are useless.        while ( (!S.empty()) && arr[S.back()] >= arr[i])            S.pop_back(); // Remove from rear         // Remove all previous smaller that are elements        // are useless.        while ( (!G.empty()) && arr[G.back()] <= arr[i])            G.pop_back(); // Remove from rear         // Add current element at rear of both deque        G.push_back(i);        S.push_back(i);    }     // Process rest of the Array elements    for (  ; i < n; i++ )    {        // Element at the front of the deque 'G' & 'S'        // is the largest and smallest        // element of previous window respectively        sum += arr[S.front()] + arr[G.front()];         // Remove all elements which are out of this        // window        while ( !S.empty() && S.front() <= i - k)            S.pop_front();        while ( !G.empty() && G.front() <= i - k)            G.pop_front();         // remove all previous greater element that are        // useless        while ( (!S.empty()) && arr[S.back()] >= arr[i])            S.pop_back(); // Remove from rear         // remove all previous smaller that are elements        // are useless        while ( (!G.empty()) && arr[G.back()] <= arr[i])            G.pop_back(); // Remove from rear         // Add current element at rear of both deque        G.push_back(i);        S.push_back(i);    }     // Sum of minimum and maximum element of last window    sum += arr[S.front()] + arr[G.front()];     return sum;} // Driver program to test above functionsint main(){    int arr[] = {2, 5, -1, 7, -3, -1, -2} ;    int n = sizeof(arr)/sizeof(arr[0]);    int k = 3;    cout << SumOfKsubArray(arr, n, k) ;    return 0;}

## Java

 // Java program to find sum of all minimum and maximum// elements Of Sub-array Size k.import java.util.Deque;import java.util.LinkedList;public class Geeks {     // Returns sum of min and max element of all subarrays    // of size k    public static int SumOfKsubArray(int arr[] , int k)    {        int sum = 0;  // Initialize result           // The queue will store indexes of useful elements        // in every window        // In deque 'G' we maintain decreasing order of        // values from front to rear        // In deque 'S' we  maintain increasing order of        // values from front to rear        Deque S=new LinkedList<>(),G=new LinkedList<>();         // Process first window of size K        int i = 0;        for (i = 0; i < k; i++)        {            // Remove all previous greater elements            // that are useless.            while ( !S.isEmpty() && arr[S.peekLast()] >= arr[i])                S.removeLast(); // Remove from rear               // Remove all previous smaller that are elements            // are useless.            while ( !G.isEmpty() && arr[G.peekLast()] <= arr[i])                G.removeLast(); // Remove from rear               // Add current element at rear of both deque            G.addLast(i);            S.addLast(i);        }           // Process rest of the Array elements        for (  ; i < arr.length; i++ )        {            // Element at the front of the deque 'G' & 'S'            // is the largest and smallest            // element of previous window respectively            sum += arr[S.peekFirst()] + arr[G.peekFirst()];               // Remove all elements which are out of this            // window            while ( !S.isEmpty() && S.peekFirst() <= i - k)                S.removeFirst();            while ( !G.isEmpty() && G.peekFirst() <= i - k)                G.removeFirst();               // remove all previous greater element that are            // useless            while ( !S.isEmpty() && arr[S.peekLast()] >= arr[i])                S.removeLast(); // Remove from rear               // remove all previous smaller that are elements            // are useless            while ( !G.isEmpty() && arr[G.peekLast()] <= arr[i])                G.removeLast(); // Remove from rear               // Add current element at rear of both deque            G.addLast(i);            S.addLast(i);        }           // Sum of minimum and maximum element of last window        sum += arr[S.peekFirst()] + arr[G.peekFirst()];           return sum;    }     public static void main(String args[])    {        int arr[] = {2, 5, -1, 7, -3, -1, -2} ;        int k = 3;        System.out.println(SumOfKsubArray(arr, k));    }}//This code is contributed by Gaurav Tiwari

## Python

 # Python3 program to find Sum of all minimum and maximum# elements Of Sub-array Size k.from collections import deque # Returns Sum of min and max element of all subarrays# of size kdef SumOfKsubArray(arr, n , k):     Sum = 0 # Initialize result     # The queue will store indexes of useful elements    # in every window    # In deque 'G' we maintain decreasing order of    # values from front to rear    # In deque 'S' we maintain increasing order of    # values from front to rear    S = deque()    G = deque()      # Process first window of size K     for i in range(k):                 # Remove all previous greater elements        # that are useless.        while ( len(S) > 0 and arr[S[-1]] >= arr[i]):            S.pop() # Remove from rear         # Remove all previous smaller that are elements        # are useless.        while ( len(G) > 0 and arr[G[-1]] <= arr[i]):            G.pop() # Remove from rear         # Add current element at rear of both deque        G.append(i)        S.append(i)     # Process rest of the Array elements    for i in range(k, n):                 # Element at the front of the deque 'G' & 'S'        # is the largest and smallest        # element of previous window respectively        Sum += arr[S[0]] + arr[G[0]]         # Remove all elements which are out of this        # window        while ( len(S) > 0 and S[0] <= i - k):            S.popleft()        while ( len(G) > 0 and G[0] <= i - k):            G.popleft()         # remove all previous greater element that are        # useless        while ( len(S) > 0 and arr[S[-1]] >= arr[i]):            S.pop() # Remove from rear         # remove all previous smaller that are elements        # are useless        while ( len(G) > 0 and arr[G[-1]] <= arr[i]):            G.pop() # Remove from rear         # Add current element at rear of both deque        G.append(i)        S.append(i)     # Sum of minimum and maximum element of last window    Sum += arr[S[0]] + arr[G[0]]     return Sum # Driver program to test above functionsarr=[2, 5, -1, 7, -3, -1, -2]n = len(arr)k = 3print(SumOfKsubArray(arr, n, k)) # This code is contributed by mohit kumar

## C#

 // C# program to find sum of all minimum and maximum// elements Of Sub-array Size k.using System;using System.Collections.Generic;class Geeks{   // Returns sum of min and max element of all subarrays  // of size k  public static int SumOfKsubArray(int []arr , int k)  {    int sum = 0;  // Initialize result     // The queue will store indexes of useful elements    // in every window    // In deque 'G' we maintain decreasing order of    // values from front to rear    // In deque 'S' we  maintain increasing order of    // values from front to rear    List S = new List();    List G = new List();     // Process first window of size K    int i = 0;    for (i = 0; i < k; i++)    {       // Remove all previous greater elements      // that are useless.      while ( S.Count != 0 && arr[S[S.Count - 1]] >= arr[i])        S.RemoveAt(S.Count - 1); // Remove from rear       // Remove all previous smaller that are elements      // are useless.      while ( G.Count != 0 && arr[G[G.Count - 1]] <= arr[i])        G.RemoveAt(G.Count - 1); // Remove from rear       // Add current element at rear of both deque      G.Add(i);      S.Add(i);    }     // Process rest of the Array elements    for (  ; i < arr.Length; i++ )    {       // Element at the front of the deque 'G' & 'S'      // is the largest and smallest      // element of previous window respectively      sum += arr[S[0]] + arr[G[0]];       // Remove all elements which are out of this      // window      while ( S.Count != 0 && S[0] <= i - k)        S.RemoveAt(0);      while ( G.Count != 0 && G[0] <= i - k)        G.RemoveAt(0);       // remove all previous greater element that are      // useless      while ( S.Count != 0 && arr[S[S.Count-1]] >= arr[i])        S.RemoveAt(S.Count - 1 ); // Remove from rear       // remove all previous smaller that are elements      // are useless      while ( G.Count != 0 && arr[G[G.Count - 1]] <= arr[i])        G.RemoveAt(G.Count - 1); // Remove from rear       // Add current element at rear of both deque      G.Add(i);      S.Add(i);    }     // Sum of minimum and maximum element of last window    sum += arr[S[0]] + arr[G[0]];      return sum;  }   // Driver code  public static void Main(String []args)  {    int []arr = {2, 5, -1, 7, -3, -1, -2} ;    int k = 3;    Console.WriteLine(SumOfKsubArray(arr, k));  }} // This code is contributed by gauravrajput1

## Javascript



Output

14

Time Complexity: O(n)
Auxiliary Space: O(k)

This article is contributed by Nishant_Singh (Pintu). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up