Skip to content
Related Articles

Related Articles

Improve Article
Sum of even numbers at even position
  • Difficulty Level : Basic
  • Last Updated : 17 Mar, 2021

Given an array of size n. The problem is to find the sum of numbers which are even and are at even index.
Examples: 
 

Input :  arr[] = {5, 6, 12, 1, 18, 8}
Output : 30
Explanation: Here, n = 6 
Now here are index and numbers as: index->arr[index]
0->5, 1->6, 2->12, 3->1, 4->18, 5->8
so, number which are even and are at even indices 
are: 2->12, 4->18
sum = 12+18 = 30

Input  : arr[] = {3, 20, 17, 9, 2, 10, 
                        18, 13, 6, 18}
Output : 26
Explanation: Here, n = 10
Now here are index and numbers as: index->arr[index]
0->3, 1->20, 2->17, 3->9, 4->2, 5->10, 
6->18, 7->13, 8->6, 9->18 
So, number which are even and are at even indices are: 
4->2, 6->18, 8->6
sum = 2+18+6 = 26

 

 

C++




// C++ implementation to
// find sum of even numbers
// at even indices
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate sum
// of even numbers at even indices
int sum_even_and_even_index(
                int arr[], int n) {
 
    int i = 0, sum = 0;
     
    // calculating sum of even
    // number at even index
    for (i = 0; i < n; i+=2) {
     
        if (arr[i] % 2 == 0) {
             
            sum += arr[i];
        }
    }
     
    // required sum
    return sum;
}
 
// Driver program to test above
int main() {
    int arr[] = {5, 6, 12, 1, 18, 8};
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << "Sum of even numbers at even indices is "
         << sum_even_and_even_index(arr, n);
     
    return 0;
}

Java




// Java implementation to find sum of
// even numbers at even indices
 
import java.io.*;
 
class GFG {
     
    // Function to calculate sum
    // of even numbers at even indices
    static int sum_even_and_even_index(
                       int arr[], int n)
    {
     
        int i = 0, sum = 0;
         
        // calculating sum of even
        // number at even index
        for (i = 0; i < n; i+=2) {
         
            if (arr[i] % 2 == 0) {
                sum += arr[i];
            }
        }
         
        // required sum
        return sum;
    }
 
    // Driver program to test above
    public static void main (String[] args) {
         
        int arr[] = {5, 6, 12, 1, 18, 8};
        int n = arr.length;
        System.out.println("Sum of even numbers"
                      + " at even indices is " +
             + sum_even_and_even_index(arr, n));
    }
}
 
// This code is contributed by vt_m.

Python3




# python 3 implementation to
# find sum of even numbers
# at even indices
 
# Function to calculate sum
# of even numbers at even indices
def sum_even_and_even_index(arr,n):
     
    i = 0
    sum = 0
     
# calculating sum of even
# number at even index
    for i in range(0,n,2):
        if (arr[i] % 2 == 0) :
            sum += arr[i]
         
    # required sum
    return sum
 
 
# Driver program to test above
arr = [5, 6, 12, 1, 18, 8]
n = len(arr)
print("Sum of even numbers at ",
             "even indices is ",
   sum_even_and_even_index(arr, n))
     
# This code is contributed by Sam007

C#




// C# implementation to find sum of
// even numbers at even indices
 
using System;
 
class GFG {
     
    // Function to calculate sum
    // of even numbers at even indices
    static int sum_even_and_even_index(
                    int []arr, int n)
    {
     
        int i = 0, sum = 0;
         
        // calculating sum of even
        // number at even index
        for (i = 0; i < n; i+=2) {
         
            if (arr[i] % 2 == 0) {
                 
                sum += arr[i];
            }
        }
         
        // required sum
        return sum;
    }
 
    // Driver program to test above
    public static void Main () {
         
        int []arr = {5, 6, 12, 1, 18, 8};
        int n = arr.Length;
        Console.WriteLine("Sum of even numbers"
                    + " at even indices is " +
            + sum_even_and_even_index(arr, n));
    }
}
 
//This code is contributed by vt_m.

PHP




<?php
// PHP implementation to
// find sum of even numbers
// at even indices
 
// Function to calculate sum
// of even numbers at even indices
function sum_even_and_even_index($arr, $n)
{
 
    $i = 0; $sum = 0;
     
    // calculating sum of even
    // number at even index
    for ($i = 0; $i < $n; $i=$i+2) {
     
        if ($arr[$i] % 2 == 0) {
             
            $sum += $arr[$i];
        }
    }
     
    // required sum
    return $sum;
}
 
// Driver Code
{
    $arr = array(5, 6, 12, 1, 18, 8);
    $n = sizeof($arr) / sizeof($arr[0]);
    echo "Sum of even numbers at ".
                 "even indices is ",
          sum_even_and_even_index($arr, $n);
     
    return 0;
}
 
// This code is contributed by nitin mittal.
?>

Javascript




<script>
 
// Javascript implementation to
// find sum of even numbers
// at even indices
 
// Function to calculate sum
// of even numbers at even indices
function sum_even_and_even_index(
                arr, n) {
 
    let i = 0, sum = 0;
     
    // calculating sum of even
    // number at even index
    for (i = 0; i < n; i += 2)
    {
        if (arr[i] % 2 == 0)
        {   
            sum += arr[i];
        }
    }
     
    // required sum
    return sum;
}
 
// Driver code
    let arr = [5, 6, 12, 1, 18, 8];
    let n = arr.length;
    document.write("Sum of even numbers at even indices is "
        + sum_even_and_even_index(arr, n));
     
// This code is contributed by Mayank Tyagi
 
</script>

Output: 
 

 Sum of even numbers at even indices is 30

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :