Sum of distinct elements when elements are in range 1 to n

Given an array of n elements such that every element of array is an integer in the range 1 to n, find the sum of all the distinct elements of the array.

Examples:

Input : arr[] = {5, 1, 2, 4, 6, 7, 3, 6, 7}
Output : 28
The distinct elements in the array are 1, 2, 
3, 4, 5, 6, 7

Input: arr[] = {1, 1, 1}
Output: 1

The problem has appeared here as a general problem and the solution will work for the above case also. But a better approach is explained below.

The approach is to mark the occurrences of the array elements by making the elements at those indices as negative. Example, a[0] = 1, a[1] = 1, a[2] = 1.
We check if a[abs(a[i])-1] is >=0, if yes, mark a[abs(a[i])-1] as negative. i.e. a[0] = 1 >=0, we mark a[1-1] as a[0] = -1. Next, a[1], check if (abs(a[1]-1) is +ve or not. If -ve, it means a[1] has already occurred before, else it is the first occurrence of this element. Refer the below code.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find sum of distinct elements
#include <iostream>
using namespace std;
  
// Returns sum of distinct elements in arr[] assuming
// that elements in a[] are in range from 1 to n.
int sumOfDistinct(int a[], int n)
{
    int sum = 0;
    for (int i = 0; i < n; i++) {
      
        // If element appears first time
        if (a[abs(a[i]) - 1] >= 0) {
            sum += abs(a[i]);
            a[abs(a[i]) - 1] *= -1;
        }
    }
     
    return sum;
}
  
// Driver code
int main()
{
    int a[] = { 5, 1, 2, 4, 6, 7, 3, 6, 7 };
    int n = sizeof(a)/sizeof(a[0]);
    cout << sumOfDistinct(a, n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// JAVA program to find sum of distinct 
// elements in sorted order
import java.io.*;
import java.util.*;
import java.math.*;
  
class GFG{
      
    // Returns sum of distinct elements in arr[]
    // assuming that elements in a[] are in 
    // range from 1 to n.
    static int sumOfDistinct(int a[], int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++) {
      
            // If element appears first time
            if (a[Math.abs(a[i]) - 1] >= 0) {
                sum += Math.abs(a[i]);
                a[Math.abs(a[i]) - 1] *= -1;
            }
        }
      
        return sum;
    }
  
  
    // Driver code
    public static void main(String args[])
    {
        int a[] = { 5, 1, 2, 4, 6, 7, 3, 6, 7 };
        int n = a.length;
        System.out.println(sumOfDistinct(a, n) );
    }
}
  
// This code is contributed by Nikita Tiwari.

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find sum of distinct elements 
# in sorted order
import math
  
# Returns sum of distinct elements in arr[]
# assuming that elements in a[] are in 
# range from 1 to n.
def sumOfDistinct(a , n) :
    sum = 0
    i = 0
    while i < n:
  
        # If element appears first time
        if (a[abs(a[i]) - 1] >= 0) :
            sum = sum + abs(a[i])
            a[abs(a[i]) - 1] = a[abs(a[i]) - 1] * (-1)
        i = i + 1
      
    return sum;
      
      
# Driver code
a = [ 5, 1, 2, 4, 6, 7, 3, 6, 7 ]
n = len(a)
print sumOfDistinct(a, n)
      
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find sum of distinct 
// elements in sorted order
using System;
  
class GFG{
      
    // Returns sum of distinct elements
    // in arr[] assuming that elements
    // in a[] are in range from 1 to n 
    static int sumOfDistinct(int []a, int n)
    {
        int sum = 0;
        for (int i = 0; i < n; i++) {
      
            // If element appears first time
            if (a[Math.Abs(a[i]) - 1] >= 0) {
                sum += Math.Abs(a[i]);
                a[Math.Abs(a[i]) - 1] *= - 1;
            }
        }
      
        return sum;
    }
  
    // Driver code
    public static void Main()
    {
        int []a = {5, 1, 2, 4, 6, 7, 3, 6, 7};
        int n = a.Length;
        Console.Write(sumOfDistinct(a, n));
    }
}
  
// This code is contributed by Nitin Mittal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find sum of
// distinct elements
  
// Returns sum of distinct 
// elements in arr[] assuming
// that elements in a[] are 
// in range from 1 to n.
function sumOfDistinct($a, $n)
{
    $sum = 0;
    for ($i = 0; $i < $n; $i++) 
    {
      
        // If element appears first time
        if ($a[abs($a[$i]) - 1] >= 0)
        {
            $sum += abs($a[$i]);
            $a[abs($a[$i]) - 1] *= -1;
        }
    }
      
    return $sum;
}
  
    // Driver code
    $a = array(5, 1, 2, 4, 6, 7, 3, 6, 7);
    $n = sizeof($a);
    echo sumOfDistinct($a, $n) ;
  
// This code is contributed by nitin mittal
?>

chevron_right



Output:

28

Time complexity: O(n)
Auxiliary Space : O(1)

This article is contributed by Ekta Goel. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : nitin mittal



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.