Skip to content
Related Articles

Related Articles

Improve Article
Sum of bitwise AND of all possible subsets of given set
  • Difficulty Level : Hard
  • Last Updated : 21 Apr, 2021

Given an array, we need to calculate the Sum of Bit-wise AND of all possible subsets of the given array.
Examples: 
 

Input : 1 2 3
Output : 9
For [1, 2, 3], all possible subsets are {1}, 
{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
Bitwise AND of these subsets are, 1 + 2 + 
3 + 0 + 1 + 2 + 0 = 9.
So, the answer would be 9.

Input : 1 2 3 4
Output : 13

 

Refer to this Post for Count Set Bit 
Naive Approach, we can produce all subsets using Power Set then calculate Bit-wise AND sum of all subsets.
In a Better approach, we are trying to calculate which array element is responsible for producing the sum into a subset. 
Let’s start with the least significant bit. To remove the contribution from other bits, we calculate number AND bit for all numbers in the set. Any subset of this that contains a 0 will not give any contribution. All nonempty subsets that only consist of 1’s will give 1 in contribution. In total there will be 2^n – 1 such subset each giving 1 in contribution. The same goes for the other bit. We get [0, 2, 2], 3 subset each giving 2. Total 3*1 + 3*2 = 9
 

Array = {1, 2, 3}
Binary representation
positions       2 1 0    
        1       0 0 1
        2       0 1 0
        3       0 1 1
              [ 0 2 2 ]
Count set bit for each position
[ 0 3 3 ] subset produced by each 
position 2^n -1 i.e. n is total sum 
for each position [ 0, 3*2^1, 3*2^0 ] 
Now calculate the sum by multiplying 
the position value i.e 2^0, 2^1 ... . 
 0 + 6 + 3 = 9

 

CPP




// C++ program to calculate sum of Bit-wise
// and sum of all subsets of an array
#include <bits/stdc++.h>
using namespace std;
 
#define BITS 32
 
int andSum(int arr[], int n)
{
    int ans = 0;
 
    // assuming representation of each element is
    // in 32 bit
    for (int i = 0; i < BITS; i++) {
        int countSetBits = 0;
 
        // iterating array element
        for (int j = 0; j < n; j++) {
 
            // Counting the set bit of array in
            // ith position
            if (arr[j] & (1 << i))
                countSetBits++;
        }
 
        // counting subset which produce sum when
        // particular bit position is set.
        int subset = (1 << countSetBits) - 1;
 
        // multiplying every position subset with 2^i
        // to count the sum.
        subset = (subset * (1 << i));
 
        ans += subset;
    }
 
    return ans;
}
 
// Drivers code
int main()
{
    int arr[] = { 1, 2, 3};
    int size = sizeof(arr) / sizeof(arr[0]);
    cout << andSum(arr, size);
 
    return 0;
}

Java




// Java program to calculate sum of Bit-wise
// and sum of all subsets of an array
class GFG {
     
    static final int BITS = 32;
     
    static int andSum(int arr[], int n)
    {
        int ans = 0;
     
        // assuming representation of each
        // element is in 32 bit
        for (int i = 0; i < BITS; i++) {
            int countSetBits = 0;
     
            // iterating array element
            for (int j = 0; j < n; j++) {
     
                // Counting the set bit of
                // array in ith position
                if ((arr[j] & (1 << i)) != 0)
                    countSetBits++;
            }
     
            // counting subset which produce
            // sum when particular bit
            // position is set.
            int subset = (1 << countSetBits) - 1;
     
            // multiplying every position
            // subset with 2^i to count the
            // sum.
            subset = (subset * (1 << i));
     
            ans += subset;
        }
     
        return ans;
    }
     
    // Drivers code
    public static void main(String args[])
    {
        int arr[] = { 1, 2, 3};
        int size = 3;
        System.out.println (andSum(arr, size));
     
    }
}
 
// This code is contributed by Arnab Kundu.

Python3




# Python3 program to calculate sum of
# Bit-wise and sum of all subsets of
# an array
 
BITS = 32;
 
def andSum(arr, n):
    ans = 0
     
    # assuming representation
    # of each element is
    # in 32 bit
    for i in range(0, BITS):
        countSetBits = 0
 
        # iterating array element
        for j in range(0, n) :
             
            # Counting the set bit
            # of array in ith
            # position
            if (arr[j] & (1 << i)) :
                countSetBits = (countSetBits
                                       + 1)
 
        # counting subset which
        # produce sum when
        # particular bit position
        # is set.
        subset = ((1 << countSetBits)
                                 - 1)
 
        # multiplying every position
        # subset with 2^i to count
        # the sum.
        subset = (subset * (1 << i))
 
        ans = ans + subset
 
    return ans
 
# Driver code
arr = [1, 2, 3]
size = len(arr)
print (andSum(arr, size))
     
# This code is contributed by
# Manish Shaw (manishshaw1)

C#




// C# program to calculate sum of Bit-wise
// and sum of all subsets of an array
using System;
 
class GFG {
     
static int BITS = 32;
 
    static int andSum(int[] arr, int n)
    {
        int ans = 0;
     
        // assuming representation of each
        // element is in 32 bit
        for (int i = 0; i < BITS; i++) {
            int countSetBits = 0;
     
            // iterating array element
            for (int j = 0; j < n; j++) {
     
                // Counting the set bit of
                // array in ith position
                if ((arr[j] & (1 << i)) != 0)
                    countSetBits++;
            }
     
            // counting subset which produce
            // sum when particular bit position
            // is set.
            int subset = (1 << countSetBits) - 1;
     
            // multiplying every position subset
            // with 2^i to count the sum.
            subset = (subset * (1 << i));
     
            ans += subset;
        }
     
        return ans;
    }
     
    // Drivers code
    static public void Main()
    {
        int []arr = { 1, 2, 3};
        int size = 3;
        Console.WriteLine (andSum(arr, size));
     
    }
}
 
// This code is contributed by Arnab Kundu.

PHP




<?php
// PHP program to calculate sum of Bit-wise
// and sum of all subsets of an array
 
$BITS = 32;
 
function andSum( $arr, $n)
{
    global $BITS;
    $ans = 0;
 
    // assuming representation
    // of each element is
    // in 32 bit
    for($i = 0; $i < $BITS; $i++)
    {
        $countSetBits = 0;
 
        // iterating array element
        for ( $j = 0; $j < $n; $j++) {
 
            // Counting the set bit
            // of array in ith position
            if ($arr[$j] & (1 << $i))
                $countSetBits++;
        }
 
        // counting subset which
        // produce sum when
        // particular bit position
        // is set.
        $subset = (1 << $countSetBits) - 1;
 
        // multiplying every position
        // subset with 2^i to count
        // the sum.
        $subset = ($subset * (1 << $i));
 
        $ans += $subset;
    }
 
    return $ans;
}
 
    // Driver code
    $arr = array(1, 2, 3);
    $size = count($arr);
    echo andSum($arr, $size);
     
// This code is contributed by anuj_67.
?>

Javascript




<script>
// javascript program to calculate sum of Bit-wise
// and sum of all subsets of an array   
var BITS = 32;
 
    function andSum(arr , n) {
        var ans = 0;
 
        // assuming representation of each
        // element is in 32 bit
        for (i = 0; i < BITS; i++) {
            var countSetBits = 0;
 
            // iterating array element
            for (j = 0; j < n; j++) {
 
                // Counting the set bit of
                // array in ith position
                if ((arr[j] & (1 << i)) != 0)
                    countSetBits++;
            }
 
            // counting subset which produce
            // sum when particular bit
            // position is set.
            var subset = (1 << countSetBits) - 1;
 
            // multiplying every position
            // subset with 2^i to count the
            // sum.
            subset = (subset * (1 << i));
 
            ans += subset;
        }
 
        return ans;
    }
 
    // Drivers code
     
        var arr = [ 1, 2, 3 ];
        var size = 3;
        document.write(andSum(arr, size));
 
// This code contributed by gauravrajput1
</script>
Output: 
9

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :