Sum and product of k smallest and k largest composite numbers in the array

Given an integer k and an array of integers arr, the task is to find the sum and product of k smallest and k largest composite numbers in the array.
Assume that there are at least k composite numbers in the array.

Examples:

Input: arr[] = {2, 5, 6, 8, 10, 11}, k = 2
Output: Sum of k-minimum composite numbers is 14
Sum of k-maximum composite numbers is 18
Product of k-minimum composite numbers is 48
Product of k-maximum composite numbers is 80
{6, 8, 10} are the only comsposite numbers from the array. {6, 8} are the 2 smallest and {8, 10} are the 2 largest among them.



Input: arr[] = {6, 4, 2, 12, 13, 5, 19, 10}, k = 3
Output: Sum of k-minimum composite numbers is 20
Sum of k-maximum composite numbers is 28
Product of k-minimum composite numbers is 240
Product of k-maximum composite numbers is 720

Approach:

  1. Using Sieve of Eratosthenes generate a boolean vector upto the size of the maximum element from the array which can be used to check whether a number is composite or not.
  2. Also set 0 and 1 as prime so that they don’t get counted as composite numbers.
  3. Now traverse the array and insert all the numbers which are composite in two heaps, a min heap and a max heap.
  4. Now, pop out top k elements from the min heap and take the sum and product of the minimum k composite numbers.
  5. Do the same with the max heap to get the sum and product of the max k composite numbers.
  6. Finally, print the results.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the sum and
// product of k smallest and k largest
// composite numbers in an array
#include <bits/stdc++.h>
using namespace std;
  
vector<bool> SieveOfEratosthenes(int max_val)
{
    // Create a boolean vector "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
    for (int p = 2; p * p <= max_val; p++) {
  
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
  
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
    return prime;
}
  
// Function that calculates the sum
// and product of k smallest and k
// largest composite numbers in an array
void compositeSumAndProduct(int arr[], int n, int k)
{
    // Find maximum value in the array
    int max_val = *max_element(arr, arr + n);
  
    // Use sieve to find all prime numbers
    // less than or equal to max_val
    vector<bool> prime = SieveOfEratosthenes(max_val);
  
    // Set 0 and 1 as primes so that
    // they don't get counted as 
    // composite numbers
    prime[0] = true;
    prime[1] = true;
  
    // Max Heap to store all the composite numbers
    priority_queue<int> maxHeap;
  
    // Min Heap to store all the composite numbers
    priority_queue<int, vector<int>, greater<int>> 
        minHeap;
  
    // Push all the composite numbers 
    // from the array to the heaps
    for (int i = 0; i < n; i++)
        if (!prime[arr[i]]) {
            minHeap.push(arr[i]);
            maxHeap.push(arr[i]);
        }
    long long int minProduct = 1
        , maxProduct = 1
        , minSum = 0
        , maxSum = 0;
    while (k--) {
  
        // Calculate the products
        minProduct *= minHeap.top();
        maxProduct *= maxHeap.top();
  
        // Calculate the sum
        minSum += minHeap.top();
        maxSum += maxHeap.top();
  
        // Pop the current minimum element
        minHeap.pop();
  
        // Pop the current maximum element
        maxHeap.pop();
    }
  
    cout << "Sum of k-minimum composite numbers is " 
         << minSum << "\n";
    cout << "Sum of k-maximum composite numbers is " 
         << maxSum << "\n";
    cout << "Product of k-minimum composite numbers is " 
         << minProduct << "\n";
    cout << "Product of k-maximum composite numbers is " 
         << maxProduct;
}
  
// Driver code
int main()
{
  
    int arr[] = { 4, 2, 12, 13, 5, 19 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    int k = 3;
  
    compositeSumAndProduct(arr, n, k);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the sum and 
// product of k smallest and k largest 
// composite numbers in an array 
import java.util.*;
  
class GFG
{
    static boolean[] SieveOfEratosThenes(int max_val) 
    {
  
        // Create a boolean vector "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        boolean[] prime = new boolean[max_val + 1];
        Arrays.fill(prime, true);
  
        for (int p = 2; p * p <= max_val; p++) 
        {
  
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p]) 
            {
  
                // Update all multiples of p
                for (int i = p * 2; i <= max_val; i += p)
                    prime[i] = false;
            }
        }
        return prime;
    }
  
    // Function that calculates the sum
    // and product of k smallest and k
    // largest composite numbers in an array
    static void compositeSumAndProduct(Integer[] arr, 
                                       int n, int k) 
    {
  
        // Find maximum value in the array
        int max_val = Collections.max(Arrays.asList(arr));
  
        // Use sieve to find all prime numbers
        // less than or equal to max_val
        boolean[] prime = SieveOfEratosThenes(max_val);
  
        // Set 0 and 1 as primes so that
        // they don't get counted as
        // composite numbers
        prime[0] = true;
        prime[1] = true;
  
        // Max Heap to store all the composite numbers
        PriorityQueue<Integer> maxHeap = 
                  new PriorityQueue<Integer>((x, y) -> y - x);
  
        // Min Heap to store all the composite numbers
        PriorityQueue<Integer> minHeap = new PriorityQueue<>();
  
        // Push all the composite numbers
        // from the array to the heaps
        for (int i = 0; i < n; i++) 
        {
            if (!prime[arr[i]]) 
            {
                minHeap.add(arr[i]);
                maxHeap.add(arr[i]);
            }
        }
  
        long minProduct = 1, maxProduct = 1
                 minSum = 0, maxSum = 0;
        Integer lastMin = 0, lastMax = 0;
        while (k-- > 0
        {
            if (minHeap.peek() != null || 
                maxHeap.peek() != null)
            {
  
                // Calculate the products
                minProduct *= minHeap.peek();
                maxProduct *= maxHeap.peek();
  
                // Calculate the sum
                minSum += minHeap.peek();
                maxSum += maxHeap.peek();
  
                // Pop the current minimum element
                lastMin = minHeap.poll();
  
                // Pop the current maximum element
                lastMax = maxHeap.poll();
            
            else 
            {
  
                // when maxHeap or minHeap is exhausted 
                // then this consition will run
                minProduct *= lastMin;
                maxProduct *= lastMax;
  
                minSum += lastMin;
                maxSum += lastMax;
            }
        }
  
        System.out.println("Sum of k-minimum composite"
                                " numbers is " + minSum);
        System.out.println("Sum of k-maximum composite"
                                " numbers is " + maxSum);
        System.out.println("Product of k-minimum composite"
                                " numbers is " + minProduct);
        System.out.println("Product of k-maximum composite"
                                " numbers is " + maxProduct);
    }
  
    // Driver Code
    public static void main(String[] args)
    {
        Integer[] arr = { 4, 2, 12, 13, 5, 19 };
        int n = arr.length;
        int k = 3;
  
        compositeSumAndProduct(arr, n, k);
    }
}
  
// This code is contributed by
// sanjeev2552

chevron_right


Output:

Sum of k-minimum composite numbers is 28
Sum of k-maximum composite numbers is 20
Product of k-minimum composite numbers is 576
Product of k-maximum composite numbers is 192


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sanjeev2552