# Sum and Product of all Prime Nodes of a Singly Linked List

Given a singly linked list containing N nodes, the task is to find the sum and product of all nodes from the list which are prime.

Examples:

```Input : List = 15 -> 16 -> 6 -> 7 -> 17
Output : Product = 119, Sum = 24
Prime nodes are 7, 17.

Input : List = 15 -> 3 -> 4 -> 2 -> 9
Output : Product = 6, Sum = 5
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The idea is to traverse the nodes of the singly linked list one by one and check if the current node is prime or not. Find the sum and product of the data of the nodes which are prime.

Below is the implementation of above idea:

## C++

 `// C++ implementation to find sum and ` `// product of all of prime nodes of ` `// the singly linked list ` ` `  `#include ` ` `  `using` `namespace` `std; ` ` `  `// Node of the singly linked list ` `struct` `Node { ` `    ``int` `data; ` `    ``Node* next; ` `}; ` ` `  `// Function to insert a node at the beginning ` `// of the singly Linked List ` `void` `push(Node** head_ref, ``int` `new_data) ` `{ ` `    ``// allocate node ` `    ``Node* new_node = (Node*)``malloc``(``sizeof``(``struct` `Node)); ` ` `  `    ``// put in the data ` `    ``new_node->data = new_data; ` ` `  `    ``// link the old list off the new node ` `    ``new_node->next = (*head_ref); ` ` `  `    ``// move the head to point to the new node ` `    ``(*head_ref) = new_node; ` `} ` ` `  `// Function to check if a number is prime ` `bool` `isPrime(``int` `n) ` `{ ` `    ``// Corner cases ` `    ``if` `(n <= 1) ` `        ``return` `false``; ` `    ``if` `(n <= 3) ` `        ``return` `true``; ` ` `  `    ``// This is checked so that we can skip ` `    ``// middle five numbers in below loop ` `    ``if` `(n % 2 == 0 || n % 3 == 0) ` `        ``return` `false``; ` ` `  `    ``for` `(``int` `i = 5; i * i <= n; i = i + 6) ` `        ``if` `(n % i == 0 || n % (i + 2) == 0) ` `            ``return` `false``; ` ` `  `    ``return` `true``; ` `} ` ` `  `// Function to find sum and product of all ` `// prime nodes of the singly linked list ` `void` `sumAndProduct(Node* head_ref) ` `{ ` `    ``int` `prod = 1; ` `    ``int` `sum = 0; ` ` `  `    ``Node* ptr = head_ref; ` ` `  `    ``// Traverse the linked list ` `    ``while` `(ptr != NULL) { ` `        ``// if current node is prime, ` `        ``// Find sum and product ` `        ``if` `(isPrime(ptr->data)) { ` `            ``prod *= ptr->data; ` `            ``sum += ptr->data; ` `        ``} ` ` `  `        ``ptr = ptr->next; ` `    ``} ` ` `  `    ``cout << ``"Sum = "` `<< sum << endl; ` `    ``cout << ``"Product = "` `<< prod; ` `} ` ` `  `// Driver program ` `int` `main() ` `{ ` `    ``// start with the empty list ` `    ``Node* head = NULL; ` ` `  `    ``// create the linked list ` `    ``// 15 -> 16 -> 7 -> 6 -> 17 ` `    ``push(&head, 17); ` `    ``push(&head, 7); ` `    ``push(&head, 6); ` `    ``push(&head, 16); ` `    ``push(&head, 15); ` ` `  `    ``sumAndProduct(head); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation to find sum and  ` `// product of all of prime nodes of  ` `// the singly linked list  ` `class` `GFG  ` `{ ` ` `  `// Node of the singly linked list  ` `static` `class` `Node ` `{  ` `    ``int` `data;  ` `    ``Node next;  ` `};  ` ` `  `// Function to insert a node at the beginning  ` `// of the singly Linked List  ` `static` `Node push(Node head_ref, ``int` `new_data)  ` `{  ` `    ``// allocate node  ` `    ``Node new_node =``new` `Node();  ` ` `  `    ``// put in the data  ` `    ``new_node.data = new_data;  ` ` `  `    ``// link the old list off the new node  ` `    ``new_node.next = (head_ref);  ` ` `  `    ``// move the head to point to the new node  ` `    ``(head_ref) = new_node; ` `    ``return` `head_ref; ` `}  ` ` `  `// Function to check if a number is prime  ` `static` `boolean` `isPrime(``int` `n)  ` `{  ` `    ``// Corner cases  ` `    ``if` `(n <= ``1``)  ` `        ``return` `false``;  ` `    ``if` `(n <= ``3``)  ` `        ``return` `true``;  ` ` `  `    ``// This is checked so that we can skip  ` `    ``// middle five numbers in below loop  ` `    ``if` `(n % ``2` `== ``0` `|| n % ``3` `== ``0``)  ` `        ``return` `false``;  ` ` `  `    ``for` `(``int` `i = ``5``; i * i <= n; i = i + ``6``)  ` `        ``if` `(n % i == ``0` `|| n % (i + ``2``) == ``0``)  ` `            ``return` `false``;  ` ` `  `    ``return` `true``;  ` `}  ` ` `  `// Function to find sum and product of all  ` `// prime nodes of the singly linked list  ` `static` `void` `sumAndProduct(Node head_ref)  ` `{  ` `    ``int` `prod = ``1``;  ` `    ``int` `sum = ``0``;  ` ` `  `    ``Node ptr = head_ref;  ` ` `  `    ``// Traverse the linked list  ` `    ``while` `(ptr != ``null``) ` `    ``{  ` `        ``// if current node is prime,  ` `        ``// Find sum and product  ` `        ``if` `(isPrime(ptr.data)) ` `        ``{  ` `            ``prod *= ptr.data;  ` `            ``sum += ptr.data;  ` `        ``}  ` ` `  `        ``ptr = ptr.next;  ` `    ``}  ` ` `  `    ``System.out.println(``"Sum = "` `+ sum );  ` `    ``System.out.println( ``"Product = "` `+ prod);  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `main(String args[]) ` `{  ` `    ``// start with the empty list  ` `    ``Node head = ``null``;  ` ` `  `    ``// create the linked list  ` `    ``// 15 . 16 . 7 . 6 . 17  ` `    ``head=push(head, ``17``);  ` `    ``head=push(head, ``7``);  ` `    ``head=push(head, ``6``);  ` `    ``head=push(head, ``16``);  ` `    ``head=push(head, ``15``);  ` ` `  `    ``sumAndProduct(head);  ` ` `  `} ` `} ` ` `  `// This code is contributed by Arnab Kundu `

## Python

 `# Python implementation to find sum and  ` `# product of all of prime nodes of  ` `# the singly linked list  ` ` `  `# Link list node  ` `class` `Node:  ` `     `  `    ``def` `__init__(``self``, data):  ` `        ``self``.data ``=` `data  ` `        ``self``.``next` `=` `next` `         `  `# Function to insert a node at the beginning  ` `# of the singly Linked List  ` `def` `push( head_ref, new_data) : ` ` `  `    ``# allocate node  ` `    ``new_node ``=``Node(``0``)  ` ` `  `    ``# put in the data  ` `    ``new_node.data ``=` `new_data  ` ` `  `    ``# link the old list off the new node  ` `    ``new_node.``next` `=` `(head_ref)  ` ` `  `    ``# move the head to point to the new node  ` `    ``(head_ref) ``=` `new_node ` `    ``return` `head_ref ` ` `  `# Function to check if a number is prime  ` `def` `isPrime(n) : ` ` `  `    ``# Corner cases  ` `    ``if` `(n <``=` `1``) : ` `        ``return` `False` `    ``if` `(n <``=` `3``) : ` `        ``return` `True` ` `  `    ``# This is checked so that we can skip  ` `    ``# middle five numbers in below loop  ` `    ``if` `(n ``%` `2` `=``=` `0` `or` `n ``%` `3` `=``=` `0``) : ` `        ``return` `False` ` `  `    ``i ``=` `5` `    ``while` `( i ``*` `i <``=` `n) : ` `        ``if` `(n ``%` `i ``=``=` `0` `or` `n ``%` `(i ``+` `2``) ``=``=` `0``) : ` `            ``return` `False` `        ``i ``=` `i ``+` `6` `    ``return` `True` ` `  `# Function to find sum and product of all  ` `# prime nodes of the singly linked list  ` `def` `sumAndProduct(head_ref) : ` ` `  `    ``prod ``=` `1` `    ``sum` `=` `0` ` `  `    ``ptr ``=` `head_ref  ` ` `  `    ``# Traverse the linked list  ` `    ``while` `(ptr !``=` `None``): ` `     `  `        ``# if current node is prime,  ` `        ``# Find sum and product  ` `        ``if` `(isPrime(ptr.data)): ` `         `  `            ``prod ``*``=` `ptr.data  ` `            ``sum` `+``=` `ptr.data  ` `         `  `        ``ptr ``=` `ptr.``next` `     `  `    ``print``(``"Sum = "` `, ``sum` `)  ` `    ``print``( ``"Product = "` `, prod)  ` ` `  `# Driver code  ` ` `  `# start with the empty list  ` `head ``=` `None` ` `  `# create the linked list  ` `# 15 . 16 . 7 . 6 . 17  ` `head ``=` `push(head, ``17``)  ` `head ``=` `push(head, ``7``)  ` `head ``=` `push(head, ``6``)  ` `head ``=` `push(head, ``16``)  ` `head ``=` `push(head, ``15``)  ` ` `  `sumAndProduct(head)  ` ` `  ` `  `# This code is contributed by Arnab Kundu `

## C#

 `// C# implementation to find sum and  ` `// product of all of prime nodes of  ` `// the singly linked list  ` `using` `System; ` `     `  `class` `GFG  ` `{  ` ` `  `// Node of the singly linked list  ` `public` `class` `Node  ` `{  ` `    ``public` `int` `data;  ` `    ``public` `Node next;  ` `};  ` ` `  `// Function to insert a node at the beginning  ` `// of the singly Linked List  ` `static` `Node push(Node head_ref, ``int` `new_data)  ` `{  ` `    ``// allocate node  ` `    ``Node new_node =``new` `Node();  ` ` `  `    ``// put in the data  ` `    ``new_node.data = new_data;  ` ` `  `    ``// link the old list off the new node  ` `    ``new_node.next = (head_ref);  ` ` `  `    ``// move the head to point to the new node  ` `    ``(head_ref) = new_node;  ` `    ``return` `head_ref;  ` `}  ` ` `  `// Function to check if a number is prime  ` `static` `bool` `isPrime(``int` `n)  ` `{  ` `    ``// Corner cases  ` `    ``if` `(n <= 1)  ` `        ``return` `false``;  ` `    ``if` `(n <= 3)  ` `        ``return` `true``;  ` ` `  `    ``// This is checked so that we can skip  ` `    ``// middle five numbers in below loop  ` `    ``if` `(n % 2 == 0 || n % 3 == 0)  ` `        ``return` `false``;  ` ` `  `    ``for` `(``int` `i = 5; i * i <= n; i = i + 6)  ` `        ``if` `(n % i == 0 || n % (i + 2) == 0)  ` `            ``return` `false``;  ` ` `  `    ``return` `true``;  ` `}  ` ` `  `// Function to find sum and product of all  ` `// prime nodes of the singly linked list  ` `static` `void` `sumAndProduct(Node head_ref)  ` `{  ` `    ``int` `prod = 1;  ` `    ``int` `sum = 0;  ` ` `  `    ``Node ptr = head_ref;  ` ` `  `    ``// Traverse the linked list  ` `    ``while` `(ptr != ``null``)  ` `    ``{  ` `        ``// if current node is prime,  ` `        ``// Find sum and product  ` `        ``if` `(isPrime(ptr.data))  ` `        ``{  ` `            ``prod *= ptr.data;  ` `            ``sum += ptr.data;  ` `        ``}  ` ` `  `        ``ptr = ptr.next;  ` `    ``}  ` ` `  `    ``Console.WriteLine(``"Sum = "` `+ sum);  ` `    ``Console.WriteLine( ``"Product = "` `+ prod);  ` `}  ` ` `  `// Driver code  ` `public` `static` `void` `Main(String []args)  ` `{  ` `    ``// start with the empty list  ` `    ``Node head = ``null``;  ` ` `  `    ``// create the linked list  ` `    ``// 15 . 16 . 7 . 6 . 17  ` `    ``head = push(head, 17);  ` `    ``head = push(head, 7);  ` `    ``head = push(head, 6);  ` `    ``head = push(head, 16);  ` `    ``head = push(head, 15);  ` ` `  `    ``sumAndProduct(head);  ` `}  ` `}  ` ` `  `// This code is contributed by 29AjayKumar `

Output:

```Sum = 24
Product = 119
```

Time Complexity: O(N), where N is the number of nodes in the linked list.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : andrew1234, 29AjayKumar