Skip to content
Related Articles

Related Articles

Improve Article

Sum and Product of all Prime Nodes of a Singly Linked List

  • Difficulty Level : Basic
  • Last Updated : 21 May, 2021

Given a singly linked list containing N nodes, the task is to find the sum and product of all nodes from the list which are prime.
Examples
 

Input : List = 15 -> 16 -> 6 -> 7 -> 17
Output : Product = 119, Sum = 24
Prime nodes are 7, 17.

Input : List = 15 -> 3 -> 4 -> 2 -> 9
Output : Product = 6, Sum = 5

 

Approach: The idea is to traverse the nodes of the singly linked list one by one and check if the current node is prime or not. Find the sum and product of the data of the nodes which are prime.
Below is the implementation of above idea: 
 

C++




// C++ implementation to find sum and
// product of all of prime nodes of
// the singly linked list
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Node of the singly linked list
struct Node {
    int data;
    Node* next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
void push(Node** head_ref, int new_data)
{
    // allocate node
    Node* new_node = (Node*)malloc(sizeof(struct Node));
 
    // put in the data
    new_node->data = new_data;
 
    // link the old list off the new node
    new_node->next = (*head_ref);
 
    // move the head to point to the new node
    (*head_ref) = new_node;
}
 
// Function to check if a number is prime
bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find sum and product of all
// prime nodes of the singly linked list
void sumAndProduct(Node* head_ref)
{
    int prod = 1;
    int sum = 0;
 
    Node* ptr = head_ref;
 
    // Traverse the linked list
    while (ptr != NULL) {
        // if current node is prime,
        // Find sum and product
        if (isPrime(ptr->data)) {
            prod *= ptr->data;
            sum += ptr->data;
        }
 
        ptr = ptr->next;
    }
 
    cout << "Sum = " << sum << endl;
    cout << "Product = " << prod;
}
 
// Driver program
int main()
{
    // start with the empty list
    Node* head = NULL;
 
    // create the linked list
    // 15 -> 16 -> 7 -> 6 -> 17
    push(&head, 17);
    push(&head, 7);
    push(&head, 6);
    push(&head, 16);
    push(&head, 15);
 
    sumAndProduct(head);
 
    return 0;
}

Java




// Java implementation to find sum and
// product of all of prime nodes of
// the singly linked list
class GFG
{
 
// Node of the singly linked list
static class Node
{
    int data;
    Node next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    // allocate node
    Node new_node =new Node();
 
    // put in the data
    new_node.data = new_data;
 
    // link the old list off the new node
    new_node.next = (head_ref);
 
    // move the head to point to the new node
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static boolean isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find sum and product of all
// prime nodes of the singly linked list
static void sumAndProduct(Node head_ref)
{
    int prod = 1;
    int sum = 0;
 
    Node ptr = head_ref;
 
    // Traverse the linked list
    while (ptr != null)
    {
        // if current node is prime,
        // Find sum and product
        if (isPrime(ptr.data))
        {
            prod *= ptr.data;
            sum += ptr.data;
        }
 
        ptr = ptr.next;
    }
 
    System.out.println("Sum = " + sum );
    System.out.println( "Product = " + prod);
}
 
// Driver code
public static void main(String args[])
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 16 . 7 . 6 . 17
    head=push(head, 17);
    head=push(head, 7);
    head=push(head, 6);
    head=push(head, 16);
    head=push(head, 15);
 
    sumAndProduct(head);
 
}
}
 
// This code is contributed by Arnab Kundu

Python




# Python implementation to find sum and
# product of all of prime nodes of
# the singly linked list
 
# Link list node
class Node:
     
    def __init__(self, data):
        self.data = data
        self.next = next
         
# Function to insert a node at the beginning
# of the singly Linked List
def push( head_ref, new_data) :
 
    # allocate node
    new_node =Node(0)
 
    # put in the data
    new_node.data = new_data
 
    # link the old list off the new node
    new_node.next = (head_ref)
 
    # move the head to point to the new node
    (head_ref) = new_node
    return head_ref
 
# Function to check if a number is prime
def isPrime(n) :
 
    # Corner cases
    if (n <= 1) :
        return False
    if (n <= 3) :
        return True
 
    # This is checked so that we can skip
    # middle five numbers in below loop
    if (n % 2 == 0 or n % 3 == 0) :
        return False
 
    i = 5
    while ( i * i <= n) :
        if (n % i == 0 or n % (i + 2) == 0) :
            return False
        i = i + 6
    return True
 
# Function to find sum and product of all
# prime nodes of the singly linked list
def sumAndProduct(head_ref) :
 
    prod = 1
    sum = 0
 
    ptr = head_ref
 
    # Traverse the linked list
    while (ptr != None):
     
        # if current node is prime,
        # Find sum and product
        if (isPrime(ptr.data)):
         
            prod *= ptr.data
            sum += ptr.data
         
        ptr = ptr.next
     
    print("Sum = " , sum )
    print( "Product = " , prod)
 
# Driver code
 
# start with the empty list
head = None
 
# create the linked list
# 15 . 16 . 7 . 6 . 17
head = push(head, 17)
head = push(head, 7)
head = push(head, 6)
head = push(head, 16)
head = push(head, 15)
 
sumAndProduct(head)
 
 
# This code is contributed by Arnab Kundu

C#




// C# implementation to find sum and
// product of all of prime nodes of
// the singly linked list
using System;
     
class GFG
{
 
// Node of the singly linked list
public class Node
{
    public int data;
    public Node next;
};
 
// Function to insert a node at the beginning
// of the singly Linked List
static Node push(Node head_ref, int new_data)
{
    // allocate node
    Node new_node =new Node();
 
    // put in the data
    new_node.data = new_data;
 
    // link the old list off the new node
    new_node.next = (head_ref);
 
    // move the head to point to the new node
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to check if a number is prime
static bool isPrime(int n)
{
    // Corner cases
    if (n <= 1)
        return false;
    if (n <= 3)
        return true;
 
    // This is checked so that we can skip
    // middle five numbers in below loop
    if (n % 2 == 0 || n % 3 == 0)
        return false;
 
    for (int i = 5; i * i <= n; i = i + 6)
        if (n % i == 0 || n % (i + 2) == 0)
            return false;
 
    return true;
}
 
// Function to find sum and product of all
// prime nodes of the singly linked list
static void sumAndProduct(Node head_ref)
{
    int prod = 1;
    int sum = 0;
 
    Node ptr = head_ref;
 
    // Traverse the linked list
    while (ptr != null)
    {
        // if current node is prime,
        // Find sum and product
        if (isPrime(ptr.data))
        {
            prod *= ptr.data;
            sum += ptr.data;
        }
 
        ptr = ptr.next;
    }
 
    Console.WriteLine("Sum = " + sum);
    Console.WriteLine( "Product = " + prod);
}
 
// Driver code
public static void Main(String []args)
{
    // start with the empty list
    Node head = null;
 
    // create the linked list
    // 15 . 16 . 7 . 6 . 17
    head = push(head, 17);
    head = push(head, 7);
    head = push(head, 6);
    head = push(head, 16);
    head = push(head, 15);
 
    sumAndProduct(head);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
// javascript implementation to find sum and
// product of all of prime nodes of
// the singly linked list     // Node of the singly linked list
class Node {
    constructor() {
        this.data = 0;
        this.next = null;
    }
}
 
    // Function to insert a node at the beginning
    // of the singly Linked List
    function push(head_ref , new_data) {
        // allocate node
var new_node = new Node();
 
        // put in the data
        new_node.data = new_data;
 
        // link the old list off the new node
        new_node.next = (head_ref);
 
        // move the head to povar to the new node
        (head_ref) = new_node;
        return head_ref;
    }
 
    // Function to check if a number is prime
    function isPrime(n) {
        // Corner cases
        if (n <= 1)
            return false;
        if (n <= 3)
            return true;
 
        // This is checked so that we can skip
        // middle five numbers in below loop
        if (n % 2 == 0 || n % 3 == 0)
            return false;
 
        for (i = 5; i * i <= n; i = i + 6)
            if (n % i == 0 || n % (i + 2) == 0)
                return false;
 
        return true;
    }
 
    // Function to find sum and product of all
    // prime nodes of the singly linked list
    function sumAndProduct(head_ref) {
        var prod = 1;
        var sum = 0;
 
var ptr = head_ref;
 
        // Traverse the linked list
        while (ptr != null) {
            // if current node is prime,
            // Find sum and product
            if (isPrime(ptr.data)) {
                prod *= ptr.data;
                sum += ptr.data;
            }
 
            ptr = ptr.next;
        }
 
        document.write("Sum = " + sum);
        document.write("<br/>Product = " + prod);
    }
 
    // Driver code
     
        // start with the empty list
var head = null;
 
        // create the linked list
        // 15 . 16 . 7 . 6 . 17
        head = push(head, 17);
        head = push(head, 7);
        head = push(head, 6);
        head = push(head, 16);
        head = push(head, 15);
 
        sumAndProduct(head);
 
 
// This code contributed by umadevi9616
</script>
Output: 
Sum = 24
Product = 119

 

Time Complexity: O(N), where N is the number of nodes in the linked list.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :