Longest subsequence with no 0 after 1

Given a binary array, find length of the longest subsequence such that there is no 0 after a 1.

Examples:

Input : 1 1 0 1
Output : 3
Explanation : 
If we remove 0 from the array, then no
zero comes right after one (satisfying 
the condition) and the maximum game 
left are 3 (i.e. 1 1 1)

Input : 0
Output : 1
Explanation : 
Since he wants to save maximum game in
the array. He doesn't remove any game.



Let’s find out how many zeros will be in this sequence and then take all ones which come after the last zero. On each step take the next zero from the beginning of the sequence and count ones after it. Update answer with the maximum value.

You can pre-calculate number of ones on suffix.
E.g. 0 1 0 0 1 1 1

After calculating the suffix the array becomes :
0 4 0 0 3 2 1

Move from start to end and each time zero is found in the array increment numberofzeros by 1. If the array[index] not zero then res = max(res, numberofzeros + value of array at that index).
And then after the loop : res = max(res, numberofzeros)

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find longest subsequence
// such that there is no 0 after 1.
#include <bits/stdc++.h>
using namespace std;
  
int maxSubseq(int vec[], int n) {    
          
    // Store the count of number of ones
    // from right to left in the array
    int suffix = 0;
    for (int i = n - 1; i >= 0; i--)
    {
        if (vec[i] == 1)
        {
            suffix++;
            vec[i] = suffix;
        }
    }
      
    // Traverse from left to right, keep count
    // of 0s and for every 0, check number of 
    // 1s after it. Update the result if needed.
    int res = 0;
    int zero = 0;    
    for (int i = 0; i < n; i++)
    {
        if (vec[i] == 0)
            zero++;
      
        // Checking the maximum size
        if (vec[i] > 0)
            res = max(res, zero + vec[i]);
    }
      
    // Checking the maximum size
    return max(res, zero);
}
  
// Driver Code
int main()
{
    int input[] = { 0, 1, 0, 0, 1, 0 };
    int n = sizeof(input) / sizeof(input[0]);    
    cout << maxSubseq(input, n);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// java program to find longest subsequence
// such that there is no 0 after 1.
import java.io.*;
  
public class GFG {
  
    static int maxSubseq(int []vec, int n)
    
              
        // Store the count of number of
        // ones from right to left in
        // the array
        int suffix = 0;
          
        for (int i = n - 1; i >= 0; i--)
        {
            if (vec[i] == 1)
            {
                suffix++;
                vec[i] = suffix;
            }
        }
          
        // Traverse from left to right, keep
        // count of 0s and for every 0, check
        // number of 1s after it. Update the
        // result if needed.
        int res = 0;
        int zero = 0
          
        for (int i = 0; i < n; i++)
        {
            if (vec[i] == 0)
                zero++;
          
            // Checking the maximum size
            if (vec[i] > 0)
                res = Math.max(res, zero + vec[i]);
        }
          
        // Checking the maximum size
        return Math.max(res, zero);
    }
      
    // Driver Code
    static public void main (String[] args)
    {
          
        int []input = { 0, 1, 0, 0, 1, 0 };
        int n = input.length;
          
        System.out.println(maxSubseq(input, n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find longest subsequence
# such that there is no 0 after 1.
  
def maxSubseq(vec, n):
    # Store the count of number of ones
    # from right to left in the array
    suffix = 0
    i = n-1
    while(i >= 0):
        if (vec[i] == 1):
            suffix += 1
            vec[i] = suffix
        i -= 1
              
    # Traverse from left to right, keep count
    # of 0s and for every 0, check number of 
    # 1s after it. Update the result if needed.
    res = 0
    zero = 0
    for i in range(0,n,1):
        if (vec[i] == 0):
            zero += 1
      
        # Checking the maximum size
        if (vec[i] > 0):
            res = max(res, zero + vec[i])
      
    # Checking the maximum size
    return max(res, zero)
  
# Driver code
 if __name__ == '__main__':
    input = [0, 1, 0, 0, 1, 0
    n = len(input
    print(maxSubseq(input, n))
  
# This code is contributed by 
# Surendra_Gangwar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find longest subsequence
// such that there is no 0 after 1.
using System;
  
public class GFG {
  
    static int maxSubseq(int []vec, int n)
    
              
        // Store the count of number of
        // ones from right to left in
        // the array
        int suffix = 0;
          
        for (int i = n - 1; i >= 0; i--)
        {
            if (vec[i] == 1)
            {
                suffix++;
                vec[i] = suffix;
            }
        }
          
        // Traverse from left to right, keep
        // count of 0s and for every 0, check
        // number of 1s after it. Update the
        // result if needed.
        int res = 0;
        int zero = 0; 
          
        for (int i = 0; i < n; i++)
        {
            if (vec[i] == 0)
                zero++;
          
            // Checking the maximum size
            if (vec[i] > 0)
                res = Math.Max(res, zero + vec[i]);
        }
          
        // Checking the maximum size
        return Math.Max(res, zero);
    }
      
    // Driver Code
  
    static public void Main ()
    {
          
        int []input = { 0, 1, 0, 0, 1, 0 };
        int n = input.Length;
          
        Console.WriteLine(maxSubseq(input, n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find longest 
// subsequence such that there 
// is no 0 after 1.
  
function maxSubseq($vec, $n
          
    // Store the count of 
    // number of ones from
    // right to left in 
    // the array
    $suffix = 0;
    for ($i = $n - 1; 
         $i >= 0; $i--)
    {
        if ($vec[$i] == 1)
        {
            $suffix++;
            $vec[$i] = $suffix;
        }
    }
      
    // Traverse from left to 
    // right, keep count of 
    // 0s and for every 0, 
    // check number of 1s after
    // it. Update the result if
    // needed.
    $res = 0;
    $zero = 0; 
    for ($i = 0; $i < $n; $i++)
    {
        if ($vec[$i] == 0)
            $zero++;
      
        // Checking the
        // maximum size
        if ($vec[$i] > 0)
            $res = max($res, $zero
                             $vec[$i]);
    }
      
    // Checking the
    // maximum size
    return max($res, $zero);
}
  
// Driver Code
$input = array(0, 1, 0, 0, 1, 0);
$n = count($input); 
echo maxSubseq($input, $n);
  
// This code is contributed
// by anuj_67.
?>

chevron_right



Output:

4

This article is contributed by Sachin Bisht. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m, SURENDRA_GANGWAR



Article Tags :
Practice Tags :


1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.