# Subarray whose absolute sum is closest to K

Given an array of n elements and an integer K, the task is to find the subarray with minimum value of **||a[i] + a[i + 1] + ……. a[j]| – K|**. In other words, find the contiguous sub-array whose sum of elements shows minimum deviation from K or the subarray whose absolute sum is closest to K.

**Example**

Input:: a[] = {1, 3, 7, 10}, K = 15

Output:Subarray {7, 10}

The contiguous sub-array [7, 10] shows minimum deviation of 2 from 15.

Input:a[] = {1, 2, 3, 4, 5, 6}, K = 6

Output:Subarray {1, 2, 3}

The contiguous sub-array [1, 2, 3] shows minimum deviation of 0 from 6.

A **naive approach** would be to check if the sum of each contiguous sub-array and it’s difference from K.

Below is the implementation of the above approach:

`# Python Code to find sub-array whose ` `# sum shows the minimum deviation ` ` ` `def` `getSubArray(arr, n, K): ` ` ` `i ` `=` `-` `1` ` ` `j ` `=` `-` `1` ` ` `currSum ` `=` `0` ` ` `# starting index, ending index, Deviation ` ` ` `result ` `=` `[i, j, ` `abs` `(K` `-` `abs` `(currSum))] ` ` ` ` ` `# iterate i and j to get all subarrays ` ` ` `for` `i ` `in` `range` `(` `0` `, n): ` ` ` ` ` `currSum ` `=` `0` ` ` ` ` `for` `j ` `in` `range` `(i, n): ` ` ` `currSum ` `+` `=` `arr[j] ` ` ` `currDev ` `=` `abs` `(K` `-` `abs` `(currSum)) ` ` ` ` ` `# found sub-array with less sum ` ` ` `if` `(currDev < result[` `2` `]): ` ` ` `result ` `=` `[i, j, currDev] ` ` ` ` ` `# exactly same sum ` ` ` `if` `(currDev ` `=` `=` `0` `): ` ` ` `return` `result ` ` ` `return` `result ` ` ` `# Driver Code ` `def` `main(): ` ` ` `arr ` `=` `[` `15` `, ` `-` `3` `, ` `5` `, ` `2` `, ` `7` `, ` `6` `, ` `34` `, ` `-` `6` `] ` ` ` ` ` `n ` `=` `len` `(arr) ` ` ` ` ` `K ` `=` `50` ` ` ` ` `[i, j, minDev] ` `=` `getSubArray(arr, n, K) ` ` ` ` ` `if` `(i ` `=` `=` `-` `1` `): ` ` ` `print` `(` `"The empty array shows minimum Deviation"` `) ` ` ` `return` `0` ` ` ` ` `for` `i ` `in` `range` `(i, j ` `+` `1` `): ` ` ` `print` `arr[i], ` ` ` ` ` `main() ` |

*chevron_right*

*filter_none*

**Output:**

-3 5 2 7 6 34

**Time Complexity:** O(N^2)

**Efficient Approach:** If the array only consists of **non-negative integers**, use the sliding window technique to improve the calculation time for sum in each iteration. The sliding window technique reduces the complexity by calculating the new sub-array sum using the previous sub-array sum. Increase the right index till the difference (K-sum) is greater than zero. The first sub-array with negative (K-sum) is considered, and the next sub-array is with left index = i+1(where i is the current right index).

Below is the implementation of the above approach:

`# Python Code to find non-negative ` `# sub-array whose sum shows minimum deviation ` `# This works only if all elements ` `# in array are non-negative ` ` ` ` ` `# function to return the index ` `def` `getSubArray(arr, n, K): ` ` ` `currSum ` `=` `0` ` ` `prevDif ` `=` `0` ` ` `currDif ` `=` `0` ` ` `result ` `=` `[` `-` `1` `, ` `-` `1` `, ` `abs` `(K` `-` `abs` `(currSum))] ` ` ` `resultTmp ` `=` `result ` ` ` `i ` `=` `0` ` ` `j ` `=` `0` ` ` ` ` `while` `(i<` `=` `j ` `and` `j<n): ` ` ` ` ` `# Add Last element tp currSum ` ` ` `currSum ` `+` `=` `arr[j] ` ` ` ` ` `# Save Difference of previous Iteration ` ` ` `prevDif ` `=` `currDif ` ` ` ` ` `# Calculate new Difference ` ` ` `currDif ` `=` `K ` `-` `abs` `(currSum) ` ` ` ` ` `# When the Sum exceeds K ` ` ` `if` `(currDif <` `=` `0` `): ` ` ` `if` `abs` `(currDif) < ` `abs` `(prevDif): ` ` ` ` ` `# Current Difference greater in magnitude ` ` ` `# Store Temporary Result ` ` ` `resultTmp ` `=` `[i, j, currDif] ` ` ` `else` `: ` ` ` ` ` `# Diffence in Previous was lesser ` ` ` `# In previous, Right index = j-1 ` ` ` `resultTmp ` `=` `[i, j` `-` `1` `, prevDif] ` ` ` ` ` `# In next iteration, Left Index Increases ` ` ` `# but Right Index remains the Same ` ` ` `# Update currSum and i Accordingly ` ` ` `currSum ` `-` `=` `(arr[i]` `+` `arr[j]) ` ` ` ` ` `i ` `+` `=` `1` ` ` ` ` `# Case to simply increase Right Index ` ` ` `else` `: ` ` ` `resultTmp ` `=` `[i, j, currDif] ` ` ` `j ` `+` `=` `1` ` ` ` ` `if` `(` `abs` `(resultTmp[` `2` `]) < ` `abs` `(result[` `2` `])): ` ` ` `# Check if lesser deviation found ` ` ` `result ` `=` `resultTmp ` ` ` ` ` `return` `result ` ` ` `# Driver Code ` `def` `main(): ` ` ` `arr ` `=` `[` `15` `, ` `-` `3` `, ` `5` `, ` `2` `, ` `7` `, ` `6` `, ` `34` `, ` `-` `6` `] ` ` ` ` ` `n ` `=` `len` `(arr) ` ` ` ` ` `K ` `=` `50` ` ` ` ` `[i, j, minDev] ` `=` `getSubArray(arr, n, K) ` ` ` ` ` `if` `(i ` `=` `=` `-` `1` `): ` ` ` `print` `(` `"The empty array shows minimum Deviation"` `) ` ` ` `return` `0` ` ` ` ` `for` `i ` `in` `range` `(i, j` `+` `1` `): ` ` ` `print` `arr[i], ` ` ` ` ` `main() ` |

*chevron_right*

*filter_none*

**Output:**

-3 5 2 7 6 34

**Time Complexity:** O(N)

## Recommended Posts:

- Subarray whose sum is closest to K
- Maximize the subarray sum after multiplying all elements of any subarray with X
- Maximum length of subarray such that sum of the subarray is even
- Subset with sum closest to zero
- Two elements whose sum is closest to zero
- Distance between two closest minimum
- Find the Sub-array with sum closest to 0
- Distance of closest zero to every element
- Bitwise AND of sub-array closest to K
- Find k closest elements to a given value
- Find closest number in array
- Closest product pair in an array
- Find closest value for every element in array
- Find a triplet in an array whose sum is closest to a given number
- Find closest smaller value for every element in array

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.