# Steps required to visit M points in order on a circular ring of N points

Given an integer ‘n’, consider a circular ring containing ‘n’ points numbered from ‘1’ to ‘n’ such that you can move in the following way :

1 -> 2 -> 3 -> ….. -> n -> 1 -> 2 -> 3 -> ……

Also, given an array of integers (of size ‘m’), the task is to find the number of steps it’ll take to get to every point in the array in order starting at ‘1’

Examples :

```Input: n = 3, m = 3, arr[] = {2, 1, 2}
Output: 4
The sequence followed is 1->2->3->1->2

Input: n = 2, m = 1, arr[] = {2}
Output: 1
The sequence followed is 1->2
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:Let’s denote the current position by cur and next position by nxt. This gives us 2 cases:

1. If cur is smaller than nxt, you can move to it in nxt – cur steps.
2. Otherwise, you first need to reach the point n in n – cur steps and then you can move to nxt in cur steps.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to count the steps required ` `int` `findSteps(``int` `n, ``int` `m, ``int` `a[]) ` `{ ` ` `  `    ``// Start at 1 ` `    ``int` `cur = 1; ` ` `  `    ``// Initialize steps ` `    ``int` `steps = 0; ` `    ``for` `(``int` `i = 0; i < m; i++) { ` ` `  `        ``// If nxt is greater than cur ` `        ``if` `(a[i] >= cur) ` `            ``steps += (a[i] - cur); ` `        ``else` `            ``steps += (n - cur + a[i]); ` ` `  `        ``// Now we are at a[i] ` `        ``cur = a[i]; ` `    ``} ` `    ``return` `steps; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `n = 3, m = 3; ` `    ``int` `a[] = { 2, 1, 2 }; ` `    ``cout << findSteps(n, m, a); ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG ` `{ ` `     `  `// Function to count the steps required ` `static` `int` `findSteps(``int` `n, ``int` `m,  ` `                     ``int` `a[]) ` `{ ` ` `  `    ``// Start at 1 ` `    ``int` `cur = ``1``; ` ` `  `    ``// Initialize steps ` `    ``int` `steps = ``0``; ` `    ``for` `(``int` `i = ``0``; i < m; i++) ` `    ``{ ` ` `  `        ``// If nxt is greater than cur ` `        ``if` `(a[i] >= cur) ` `            ``steps += (a[i] - cur); ` `        ``else` `            ``steps += (n - cur + a[i]); ` ` `  `        ``// Now we are at a[i] ` `        ``cur = a[i]; ` `    ``} ` `    ``return` `steps; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String []args) ` `{ ` `    ``int` `n = ``3``, m = ``3``; ` `    ``int` `a[] = { ``2``, ``1``, ``2` `}; ` `    ``System.out.println(findSteps(n, m, a)); ` `} ` `} ` ` `  `// This code is contributed by ihritik `

## C#

 `// C# implementation of the approach ` `using` `System; ` ` `  `class` `GFG ` `{ ` `// Function to count the  ` `// steps required ` `static` `int` `findSteps(``int` `n,  ` `                     ``int` `m, ``int` `[]a) ` `{ ` ` `  `    ``// Start at 1 ` `    ``int` `cur = 1; ` ` `  `    ``// Initialize steps ` `    ``int` `steps = 0; ` `    ``for` `(``int` `i = 0; i < m; i++)  ` `    ``{ ` ` `  `        ``// If nxt is greater than cur ` `        ``if` `(a[i] >= cur) ` `            ``steps += (a[i] - cur); ` `        ``else` `            ``steps += (n - cur + a[i]); ` ` `  `        ``// Now we are at a[i] ` `        ``cur = a[i]; ` `    ``} ` `    ``return` `steps; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main() ` `{ ` `    ``int` `n = 3, m = 3; ` `    ``int` `[]a = { 2, 1, 2 }; ` `    ``Console.WriteLine(findSteps(n, m, a)); ` `} ` `} ` ` `  `// This code is contributed by ihritik `

## Python3

 `# Python3 implementation of the approach ` ` `  `# Function to count the steps required ` `def` `findSteps(n, m, a): ` ` `  `    ``# Start at 1 ` `    ``cur ``=` `1` ` `  `    ``# Initialize steps ` `    ``steps ``=` `0` `    ``for` `i ``in` `range``(``0``, m):  ` ` `  `        ``# If nxt is greater than cur ` `        ``if` `(a[i] >``=` `cur): ` `            ``steps ``+``=` `(a[i] ``-` `cur) ` `        ``else``: ` `            ``steps ``+``=` `(n ``-` `cur ``+` `a[i]) ` ` `  `        ``# Now we are at a[i] ` `        ``cur ``=` `a[i] ` `     `  `    ``return` `steps ` ` `  `# Driver code ` `n ``=` `3` `m ``=` `3` `a ``=` `[``2``, ``1``, ``2` `] ` `print``(findSteps(n, m, a)) ` ` `  `# This code is contributed by ihritik `

## PHP

 `= ``\$cur``) ` `            ``\$steps` `+= (``\$a``[``\$i``] - ``\$cur``); ` `        ``else` `            ``\$steps` `+= (``\$n` `- ``\$cur` `+ ``\$a``[``\$i``]); ` ` `  `        ``// Now we are at a[i] ` `        ``\$cur` `= ``\$a``[``\$i``]; ` `    ``} ` `    ``return` `\$steps``; ` `} ` ` `  `// Driver code ` `\$n` `= 3; ` `\$m` `= 3; ` `\$a` `= ``array``(2, 1, 2 ); ` `echo` `findSteps(``\$n``, ``\$m``, ``\$a``); ` ` `  `// This code is contributed by ihritik ` `?> `

Output:

```4
```

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : ihritik