Stella Octangula Number

Given a number n, check it is the Stella Octangula number or not. A number of the form n(2n^{2} - 1) where n is a whole number(0, 1, 2, 3, 4, …) is called Stella Octangula. First few Stella Octangula numbers are 0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, …

Stella octangula numbers which are perfect squares are 1 and 9653449.

Given a number x, check if it is Stella octangula.



Examples:

Input: x = 51
Output: Yes
For n = 3, the value of expression
n(2n2 - 1) is 51

Input: n = 53
Output: No

A simple solution is to run a loop starting from n = 0. For every n, check if n(2n2 – 1) is equal to x. We run the loop while value of n(2n2 – 1) is smaller than or equal to x.

An efficient solution is to use Unbounded Binary Search. We first find a value of n such that n(2n2 – 1) is greater than x using repeated doubling. Then we apply Binary Search.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to check if a number is Stella
// Octangula Number
#include <bits/stdc++.h>
using namespace std;
  
// Returns value of n*(2*n*n - 1)
int f(int n) {
   return n*(2*n*n - 1);
}
  
// Finds if a value of f(n) is equl to x
// where n is in interval [low..high]
bool binarySearch(int low, int high, int x)
{
    while (low <= high) {
        long long mid = (low + high) / 2;
  
        if (f(mid) < x)
            low = mid + 1;
        else if (f(mid) > x)
            high = mid - 1;
        else
            return true;
    }
    return false;
}
  
// Returns true if x isStella Octangula Number.
// Else returns false.
bool isStellaOctangula(int x)
{
    if (x == 0)
      return true;
  
    // Find 'high' for binary search by
    // repeated doubling
    int i = 1;
    while (f(i) < x)
        i = i*2;
  
    // If condition is satisfied for a
    // power of 2.
    if (f(i) == x)
        return true;
  
    //  Call binary search
    return binarySearch(i/2, i, x);
}
  
// driver code
int main()
{
    int n = 51;
    if (isStellaOctangula(n))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to check if 
// a number is Stella 
// Octangula Number
import java.io.*;
  
class GFG
{
  
// Returns value of
// n*(2*n*n - 1)
static int f(int n) 
{
    return n * (2 * n * 
                n - 1);
}
  
// Finds if a value of 
// f(n) is equl to x 
// where n is in 
// interval [low..high]
static boolean binarySearch(int low, 
                            int high, 
                            int x)
{
    while (low <= high) 
    {
        int mid = (low + high) / 2;
  
        if (f(mid) < x)
            low = mid + 1;
        else if (f(mid) > x)
            high = mid - 1;
        else
            return true;
    }
    return false;
}
  
// Returns true if x 
// is Stella Octangula 
// Number.Else returns 
// false.
static boolean isStellaOctangula(int x)
{
    if (x == 0)
    return true;
  
    // Find 'high' for 
    // binary search by
    // repeated doubling
    int i = 1;
    while (f(i) < x)
        i = i * 2;
  
    // If condition is 
    // satisfied for a
    // power of 2.
    if (f(i) == x)
        return true;
  
    // Call binary search
    return binarySearch(i / 2
                        i, x);
}
  
// Driver code
public static void main (String[] args) 
{
    int n = 51;
    if (isStellaOctangula(n))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
  
// This code is contributed 
// by anuj_67.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// Program to check if 
// a number is Stella 
// Octangula Number
using System;
  
class GFG
{
  
// Returns value of
// n*(2*n*n - 1)
static int f(int n) 
{
    return n * (2 * n * 
                n - 1);
}
  
// Finds if a value of 
// f(n) is equl to x 
// where n is in 
// interval [low..high]
static bool binarySearch(int low, 
                         int high, 
                         int x)
{
    while (low <= high) 
    {
        int mid = (low + high) / 2;
  
        if (f(mid) < x)
            low = mid + 1;
        else if (f(mid) > x)
            high = mid - 1;
        else
            return true;
    }
    return false;
}
  
// Returns true if x 
// is Stella Octangula 
// Number.Else returns 
// false.
static bool isStellaOctangula(int x)
{
    if (x == 0)
    return true;
  
    // Find 'high' for 
    // binary search by
    // repeated doubling
    int i = 1;
    while (f(i) < x)
        i = i * 2;
  
    // If condition is 
    // satisfied for a
    // power of 2.
    if (f(i) == x)
        return true;
  
    // Call binary search
    return binarySearch(i / 2, 
                        i, x);
}
  
// Driver code
public static void Main () 
{
    int n = 51;
    if (isStellaOctangula(n))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
  
// This code is contributed 
// by anuj_67.

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m