Stein’s algorithm or binary GCD algorithm is an algorithm that computes the greatest common divisor of two non-negative integers. Stein’s algorithm replaces division with arithmetic shifts, comparisons, and subtraction.
Examples:
Input: a = 17, b = 34
Output : 17
Input: a = 50, b = 49
Output: 1
Algorithm to find GCD using Stein’s algorithm gcd(a, b)
- If both a and b are 0, gcd is zero gcd(0, 0) = 0.
- gcd(a, 0) = a and gcd(0, b) = b because everything divides 0.
- If a and b are both even, gcd(a, b) = 2*gcd(a/2, b/2) because 2 is a common divisor. Multiplication with 2 can be done with bitwise shift operator.
- If a is even and b is odd, gcd(a, b) = gcd(a/2, b). Similarly, if a is odd and b is even, then
gcd(a, b) = gcd(a, b/2). It is because 2 is not a common divisor.
- If both a and b are odd, then gcd(a, b) = gcd(|a-b|/2, b). Note that difference of two odd numbers is even
- Repeat steps 3–5 until a = b, or until a = 0. In either case, the GCD is power(2, k) * b, where power(2, k) is 2 raise to the power of k and k is the number of common factors of 2 found in step 3.
Iterative Implementation
C++
#include <bits/stdc++.h>
using namespace std;
int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
int k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
while ((a & 1) == 0)
a >>= 1;
do
{
while ((b & 1) == 0)
b >>= 1;
if (a > b)
swap(a, b);
b = (b - a);
} while (b != 0);
return a << k;
}
int main()
{
int a = 34, b = 17;
printf ( "Gcd of given numbers is %d\n" , gcd(a, b));
return 0;
}
|
Java
import java.io.*;
class GFG {
static int gcd( int a, int b)
{
if (a == 0 )
return b;
if (b == 0 )
return a;
int k;
for (k = 0 ; ((a | b) & 1 ) == 0 ; ++k)
{
a >>= 1 ;
b >>= 1 ;
}
while ((a & 1 ) == 0 )
a >>= 1 ;
do
{
while ((b & 1 ) == 0 )
b >>= 1 ;
if (a > b)
{
int temp = a;
a = b;
b = temp;
}
b = (b - a);
} while (b != 0 );
return a << k;
}
public static void main(String args[])
{
int a = 34 , b = 17 ;
System.out.println( "Gcd of given "
+ "numbers is " + gcd(a, b));
}
}
|
Python3
def gcd(a, b):
if (a = = 0 ):
return b
if (b = = 0 ):
return a
k = 0
while (((a | b) & 1 ) = = 0 ):
a = a >> 1
b = b >> 1
k = k + 1
while ((a & 1 ) = = 0 ):
a = a >> 1
while (b ! = 0 ):
while ((b & 1 ) = = 0 ):
b = b >> 1
if (a > b):
temp = a
a = b
b = temp
b = (b - a)
return (a << k)
a = 34
b = 17
print ( "Gcd of given numbers is " , gcd(a, b))
|
C#
using System;
class GFG {
static int gcd( int a, int b)
{
if (a == 0)
return b;
if (b == 0)
return a;
int k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
while ((a & 1) == 0)
a >>= 1;
do
{
while ((b & 1) == 0)
b >>= 1;
if (a > b) {
int temp = a;
a = b;
b = temp;
}
b = (b - a);
} while (b != 0);
return a << k;
}
public static void Main()
{
int a = 34, b = 17;
Console.Write( "Gcd of given "
+ "numbers is " + gcd(a, b));
}
}
|
PHP
<?php
function gcd( $a , $b )
{
if ( $a == 0)
return $b ;
if ( $b == 0)
return $a ;
$k ;
for ( $k = 0; (( $a | $b ) & 1) == 0; ++ $k )
{
$a >>= 1;
$b >>= 1;
}
while (( $a & 1) == 0)
$a >>= 1;
do
{
while (( $b & 1) == 0)
$b >>= 1;
if ( $a > $b )
swap( $a , $b );
$b = ( $b - $a );
} while ( $b != 0);
return $a << $k ;
}
$a = 34; $b = 17;
echo "Gcd of given numbers is " .
gcd( $a , $b );
?>
|
Javascript
<script>
function gcd( a, b)
{
if (a == 0)
return b;
if (b == 0)
return a;
let k;
for (k = 0; ((a | b) & 1) == 0; ++k)
{
a >>= 1;
b >>= 1;
}
while ((a & 1) == 0)
a >>= 1;
do
{
while ((b & 1) == 0)
b >>= 1;
if (a > b){
let t = a;
a = b;
b = t;
}
b = (b - a);
} while (b != 0);
return a << k;
}
let a = 34, b = 17;
document.write( "Gcd of given numbers is " + gcd(a, b));
</script>
|
Output
Gcd of given numbers is 17
Time Complexity: O(N*N)
Auxiliary Space: O(1)
Recursive Implementation
C++
#include <bits/stdc++.h>
using namespace std;
int gcd( int a, int b)
{
if (a == b)
return a;
if (a == 0)
return b;
if (b == 0)
return a;
if (~a & 1)
{
if (b & 1)
return gcd(a >> 1, b);
else
return gcd(a >> 1, b >> 1) << 1;
}
if (~b & 1)
return gcd(a, b >> 1);
if (a > b)
return gcd((a - b) >> 1, b);
return gcd((b - a) >> 1, a);
}
int main()
{
int a = 34, b = 17;
printf ( "Gcd of given numbers is %d\n" , gcd(a, b));
return 0;
}
|
Java
import java.io.*;
class GFG {
static int gcd( int a, int b)
{
if (a == b)
return a;
if (a == 0 )
return b;
if (b == 0 )
return a;
if ((~a & 1 ) == 1 )
{
if ((b & 1 ) == 1 )
return gcd(a >> 1 , b);
else
return gcd(a >> 1 , b >> 1 ) << 1 ;
}
if ((~b & 1 ) == 1 )
return gcd(a, b >> 1 );
if (a > b)
return gcd((a - b) >> 1 , b);
return gcd((b - a) >> 1 , a);
}
public static void main(String args[])
{
int a = 34 , b = 17 ;
System.out.println( "Gcd of given"
+ "numbers is " + gcd(a, b));
}
}
|
Python3
def gcd(a, b):
if (a = = b):
return a
if (a = = 0 ):
return b
if (b = = 0 ):
return a
if ((~a & 1 ) = = 1 ):
if ((b & 1 ) = = 1 ):
return gcd(a >> 1 , b)
else :
return (gcd(a >> 1 , b >> 1 ) << 1 )
if ((~b & 1 ) = = 1 ):
return gcd(a, b >> 1 )
if (a > b):
return gcd((a - b) >> 1 , b)
return gcd((b - a) >> 1 , a)
a, b = 34 , 17
print ( "Gcd of given numbers is " ,
gcd(a, b))
|
C#
using System;
class GFG {
static int gcd( int a, int b)
{
if (a == b)
return a;
if (a == 0)
return b;
if (b == 0)
return a;
if ((~a & 1) == 1) {
if ((b & 1) == 1)
return gcd(a >> 1, b);
else
return gcd(a >> 1, b >> 1) << 1;
}
if ((~b & 1) == 1)
return gcd(a, b >> 1);
if (a > b)
return gcd((a - b) >> 1, b);
return gcd((b - a) >> 1, a);
}
public static void Main()
{
int a = 34, b = 17;
Console.Write( "Gcd of given"
+ "numbers is " + gcd(a, b));
}
}
|
PHP
<?php
function gcd( $a , $b )
{
if ( $a == $b )
return $a ;
if ( $a == 0)
return $b ;
if ( $b == 0)
return $a ;
if (~ $a & 1)
{
if ( $b & 1)
return gcd( $a >> 1, $b );
else
return gcd( $a >> 1, $b >> 1) << 1;
}
if (~ $b & 1)
return gcd( $a , $b >> 1);
if ( $a > $b )
return gcd(( $a - $b ) >> 1, $b );
return gcd(( $b - $a ) >> 1, $a );
}
$a = 34; $b = 17;
echo "Gcd of given numbers is: " ,
gcd( $a , $b );
?>
|
Javascript
<script>
function gcd(a, b)
{
if (a == b)
return a;
if (a == 0)
return b;
if (b == 0)
return a;
if ((~a & 1) == 1)
{
if ((b & 1) == 1)
return gcd(a >> 1, b);
else
return gcd(a >> 1, b >> 1) << 1;
}
if ((~b & 1) == 1)
return gcd(a, b >> 1);
if (a > b)
return gcd((a - b) >> 1, b);
return gcd((b - a) >> 1, a);
}
let a = 34, b = 17;
document.write( "Gcd of given "
+ "numbers is " + gcd(a, b));
</script>
|
Output
Gcd of given numbers is 17
Time Complexity: O(N*N) where N is the number of bits in the larger number.
Auxiliary Space: O(N*N) where N is the number of bits in the larger number.
You may also like – Basic and Extended Euclidean Algorithm
Advantages over Euclid’s GCD Algorithm
- Stein’s algorithm is optimized version of Euclid’s GCD Algorithm.
- it is more efficient by using the bitwise shift operator.
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!