 GeeksforGeeks App
Open App Browser
Continue

# std::uniform_real_ distribution class in C++ with Examples

In Probability, Uniform Distribution Function refers to the distribution in which the probabilities are defined on a continuous random variable, one which can take any value between two numbers, then the distribution is said to be a continuous probability distribution. For example, the temperature throughout a given day can be represented by a continuous random variable and the corresponding probability distribution is said to be continuous. C++ have introduced uniform_real_distribution class in the random library whose member function give random real numbers or continuous values from a given input range with uniform probability.
Public member functions in uniform_real_distribution class:

1. operator(): This function returns a random value from the range given. The datatype of the return value is specified during initialization of the template class. The probability for any value is same. The time complexity for this operation is O(1).
Example:

## CPP

 // C++ code to demonstrate the working of// operator() function  #include   // for uniform_real_distribution function#include   using namespace std;  int main(){    // Here default_random_engine object    // is used as source of randomness    // We can give seed also to default_random_engine    // if psuedorandom numbers are required    default_random_engine generator;      double a = 0.0, b = 1.0;      // Initializing of uniform_real_distribution class    uniform_real_distribution<double> distribution(a, b);      // number of experiments    const int num_of_exp = 10000000;    // number of ranges    int n = 100;    int p[n] = {};    for (int i = 0; i < num_of_exp; ++i) {          // using operator() function        // to give random values        double number = distribution(generator);        ++p[int(number * n)];    }      cout << "Probability of some ranges" << endl;    // Displaying the probability of some ranges    // after generating values 10000 times.    cout << "0.50-0.51"         << " " << (float)p / (float)num_of_exp << endl;    cout << "0.60-0.61"         << " " << (float)p / (float)num_of_exp << endl;    cout << "0.45-0.46"         << " " << (float)p / (float)num_of_exp << endl;    return 0;}

Output:

Probability of some ranges
0.50-0.51 0.0099808
0.60-0.61 0.0099719
0.45-0.46 0.009999

The probability of all ranges are almost equal.

• a(): Returns lower bound of range.

• b(): Returns upper bound of range.

• min(): Returns minimum value the function can return. For uniform distribution min() and a() return same value.

• max(): Returns minimum value the function can return. For uniform distribution min() and a() return same value.

• reset(): This function resets the distribution such that the next random values generated are not based on the previous values.

Example:

## CPP

 // C++ code to demonstrate the working of// a(), b(), min(), max(), reset() function  #include   // for uniform_real_distribution function#include   using namespace std;  int main(){    double a = 0, b = 1.5;      // Initializing of uniform_real_distribution class    uniform_real_distribution<double> distribution(a, b);      // Using a() and b()    cout << "Lower Bound"         << " " << distribution.a() << endl;    cout << "Upper Bound"         << " " << distribution.b() << endl;      // Using min() and max()    cout << "Minimum possible output"         << " " << distribution.min() << endl;    cout << "Maximum possible output"         << " " << distribution.max() << endl;      // Using reset function    distribution.reset();      return 0;}

Output:

Lower Bound 0
Upper Bound 1.5
Minimum possible output 0
Maximum possible output 1.5

My Personal Notes arrow_drop_up