In Probability, Uniform Distribution Function refers to the distribution in which the probabilities are defined on a continuous random variable, one which can take any value between two numbers, then the distribution is said to be a continuous probability distribution. For example, the temperature throughout a given day can be represented by a continuous random variable and the corresponding probability distribution is said to be continuous.

C++ have introduced **uniform_real_distribution** class in the **random library** whose member function give random real numbers or continuous values from a given input range with uniform probabilty.

**Public member functions in uniform_real_distribution class:**

**operator():**This function returns a random value from the range given. The datatype of the return value is specified during initialization of the template class. The probability for any value is same. The time complexity for this operation is O(1).**Example:**`// C++ code to demonstrate the working of`

`// operator() function`

`#include <iostream>`

`// for uniform_real_distribution function`

`#include <random>`

`using`

`namespace`

`std;`

`int`

`main()`

`{`

`// Here default_random_engine object`

`// is used as source of randomness`

`// We can give seed also to default_random_engine`

`// if psuedorandom numbers are required`

`default_random_engine generator;`

`double`

`a = 0.0, b = 1.0;`

`// Initializing of uniform_real_distribution class`

`uniform_real_distribution<`

`double`

`> distribution(a, b);`

`// number of experiments`

`const`

`int`

`num_of_exp = 10000000;`

`// number of ranges`

`int`

`n = 100;`

`int`

`p[n] = {};`

`for`

`(`

`int`

`i = 0; i < num_of_exp; ++i) {`

`// using operator() function`

`// to give random values`

`double`

`number = distribution(generator);`

`++p[`

`int`

`(number * n)];`

`}`

`cout <<`

`"Probability of some ranges"`

`<< endl;`

`// Displaying the probability of some ranges`

`// after generating values 10000 times.`

`cout <<`

`"0.50-0.51"`

`<<`

`" "`

`<< (`

`float`

`)p[50] / (`

`float`

`)num_of_exp << endl;`

`cout <<`

`"0.60-0.61"`

`<<`

`" "`

`<< (`

`float`

`)p[60] / (`

`float`

`)num_of_exp << endl;`

`cout <<`

`"0.45-0.46"`

`<<`

`" "`

`<< (`

`float`

`)p[45] / (`

`float`

`)num_of_exp << endl;`

`return`

`0;`

`}`

**Output:**Probability of some ranges 0.50-0.51 0.0099808 0.60-0.61 0.0099719 0.45-0.46 0.009999

The probability of all ranges are almost equal.

The other member functions are:

**a():**Returns lower bound of range.**b():**Returns upper bound of range.**min():**Returns minimum value the function can return. For uniform distribution min() and a() return same value.**max():**Returns minimum value the function can return. For uniform distribution min() and a() return same value.**reset():**This function resets the distribution such that the next random values generated are not based on the previous values.

**Example:**

`// C++ code to demonstrate the working of` `// a(), b(), min(), max(), reset() function` ` ` `#include <iostream>` ` ` `// for uniform_real_distribution function` `#include <random>` ` ` `using` `namespace` `std;` ` ` `int` `main()` `{` ` ` `double` `a = 0, b = 1.5;` ` ` ` ` `// Initializing of uniform_real_distribution class` ` ` `uniform_real_distribution<` `double` `> distribution(a, b);` ` ` ` ` `// Using a() and b()` ` ` `cout << ` `"Lower Bound"` ` ` `<< ` `" "` `<< distribution.a() << endl;` ` ` `cout << ` `"Upper Bound"` ` ` `<< ` `" "` `<< distribution.b() << endl;` ` ` ` ` `// Using min() and max()` ` ` `cout << ` `"Minimum possible output"` ` ` `<< ` `" "` `<< distribution.min() << endl;` ` ` `cout << ` `"Maximum possible output"` ` ` `<< ` `" "` `<< distribution.max() << endl;` ` ` ` ` `// Using reset function` ` ` `distribution.reset();` ` ` ` ` `return` `0;` `}` |

**Output:**

Lower Bound 0 Upper Bound 1.5 Minimum possible output 0 Maximum possible output 1.5

**Reference:**

http://www.cplusplus.com/reference/random/uniform_real_distribution/

**C++ Foundation Course**for Basic to Advanced C++ and

**C++ STL Course**for foundation plus STL. To complete your preparation from learning a language to DS Algo and many more, please refer

**Complete Interview Preparation Course**

**.**