Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Stack | Set 2 (Infix to Postfix)

  • Difficulty Level : Medium
  • Last Updated : 06 Sep, 2021
 

Prerequisite – Stack | Set 1 (Introduction) 
Infix expression: The expression of the form a op b. When an operator is in-between every pair of operands.
Postfix expression: The expression of the form a b op. When an operator is followed for every pair of operands.
Why postfix representation of the expression? 
The compiler scans the expression either from left to right or from right to left. 
Consider the below expression: a op1 b op2 c op3 d 
If op1 = +, op2 = *, op3 = +
The compiler first scans the expression to evaluate the expression b * c, then again scans the expression to add a to it. The result is then added to d after another scan.
The repeated scanning makes it very in-efficient. It is better to convert the expression to postfix(or prefix) form before evaluation.
The corresponding expression in postfix form is abc*+d+. The postfix expressions can be evaluated easily using a stack. We will cover postfix expression evaluation in a separate post.
Algorithm 
1. Scan the infix expression from left to right. 
2. If the scanned character is an operand, output it. 
3. Else, 
      1 If the precedence of the scanned operator is greater than the precedence of the operator in the stack(or the stack is empty or the stack contains a ‘(‘ ), push it. 
      2 Else, Pop all the operators from the stack which are greater than or equal to in precedence than that of the scanned operator. After doing that Push the scanned operator to the stack. (If you encounter parenthesis while popping then stop there and push the scanned operator in the stack.) 
4. If the scanned character is an ‘(‘, push it to the stack. 
5. If the scanned character is an ‘)’, pop the stack and output it until a ‘(‘ is encountered, and discard both the parenthesis. 
6. Repeat steps 2-6 until infix expression is scanned. 
7. Print the output 
8. Pop and output from the stack until it is not empty.

Following is the implementation of the above algorithm  

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!

C++




/* C++ implementation to convert
infix expression to postfix*/
 
#include<bits/stdc++.h>
using namespace std;
 
//Function to return precedence of operators
int prec(char c) {
    if(c == '^')
        return 3;
    else if(c == '/' || c=='*')
        return 2;
    else if(c == '+' || c == '-')
        return 1;
    else
        return -1;
}
 
// The main function to convert infix expression
//to postfix expression
void infixToPostfix(string s) {
 
    stack<char> st; //For stack operations, we are using C++ built in stack
    string result;
 
    for(int i = 0; i < s.length(); i++) {
        char c = s[i];
 
        // If the scanned character is
        // an operand, add it to output string.
        if((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9'))
            result += c;
 
        // If the scanned character is an
        // ‘(‘, push it to the stack.
        else if(c == '(')
            st.push('(');
 
        // If the scanned character is an ‘)’,
        // pop and to output string from the stack
        // until an ‘(‘ is encountered.
        else if(c == ')') {
            while(st.top() != '(')
            {
                result += st.top();
                st.pop();
            }
            st.pop();
        }
 
        //If an operator is scanned
        else {
            while(!st.empty() && prec(s[i]) <= prec(st.top())) {
                result += st.top();
                st.pop(); 
            }
            st.push(c);
        }
    }
 
    // Pop all the remaining elements from the stack
    while(!st.empty()) {
        result += st.top();
        st.pop();
    }
 
    cout << result << endl;
}
 
//Driver program to test above functions
int main() {
    string exp = "a+b*(c^d-e)^(f+g*h)-i";
    infixToPostfix(exp);
    return 0;
}

C




// C program to convert infix expression to postfix
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
 
// Stack type
struct Stack
{
    int top;
    unsigned capacity;
    int* array;
};
 
// Stack Operations
struct Stack* createStack( unsigned capacity )
{
    struct Stack* stack = (struct Stack*)
           malloc(sizeof(struct Stack));
 
    if (!stack)
        return NULL;
 
    stack->top = -1;
    stack->capacity = capacity;
 
    stack->array = (int*) malloc(stack->capacity *
                                   sizeof(int));
 
    return stack;
}
int isEmpty(struct Stack* stack)
{
    return stack->top == -1 ;
}
char peek(struct Stack* stack)
{
    return stack->array[stack->top];
}
char pop(struct Stack* stack)
{
    if (!isEmpty(stack))
        return stack->array[stack->top--] ;
    return '$';
}
void push(struct Stack* stack, char op)
{
    stack->array[++stack->top] = op;
}
 
 
// A utility function to check if
// the given character is operand
int isOperand(char ch)
{
    return (ch >= 'a' && ch <= 'z') ||
           (ch >= 'A' && ch <= 'Z');
}
 
// A utility function to return
// precedence of a given operator
// Higher returned value means
// higher precedence
int Prec(char ch)
{
    switch (ch)
    {
    case '+':
    case '-':
        return 1;
 
    case '*':
    case '/':
        return 2;
 
    case '^':
        return 3;
    }
    return -1;
}
 
 
// The main function that
// converts given infix expression
// to postfix expression.
int infixToPostfix(char* exp)
{
    int i, k;
 
    // Create a stack of capacity
    // equal to expression size
    struct Stack* stack = createStack(strlen(exp));
    if(!stack) // See if stack was created successfully
        return -1 ;
 
    for (i = 0, k = -1; exp[i]; ++i)
    {
         
        // If the scanned character is
        // an operand, add it to output.
        if (isOperand(exp[i]))
            exp[++k] = exp[i];
         
        // If the scanned character is an
        // ‘(‘, push it to the stack.
        else if (exp[i] == '(')
            push(stack, exp[i]);
         
        // If the scanned character is an ‘)’,
        // pop and output from the stack
        // until an ‘(‘ is encountered.
        else if (exp[i] == ')')
        {
            while (!isEmpty(stack) && peek(stack) != '(')
                exp[++k] = pop(stack);
            if (!isEmpty(stack) && peek(stack) != '(')
                return -1; // invalid expression            
            else
                pop(stack);
        }
        else // an operator is encountered
        {
            while (!isEmpty(stack) &&
                 Prec(exp[i]) <= Prec(peek(stack)))
                exp[++k] = pop(stack);
            push(stack, exp[i]);
        }
 
    }
 
    // pop all the operators from the stack
    while (!isEmpty(stack))
        exp[++k] = pop(stack );
 
    exp[++k] = '\0';
    printf( "%s", exp );
}
 
// Driver program to test above functions
int main()
{
    char exp[] = "a+b*(c^d-e)^(f+g*h)-i";
    infixToPostfix(exp);
    return 0;
}

Java




/* Java implementation to convert
 infix expression to postfix*/
// Note that here we use Stack class for Stack operations
 
import java.util.Stack;
 
class Test
{
     
    // A utility function to return
    // precedence of a given operator
    // Higher returned value means
    // higher precedence
    static int Prec(char ch)
    {
        switch (ch)
        {
        case '+':
        case '-':
            return 1;
      
        case '*':
        case '/':
            return 2;
      
        case '^':
            return 3;
        }
        return -1;
    }
      
    // The main method that converts
    // given infix expression
    // to postfix expression.
    static String infixToPostfix(String exp)
    {
        // initializing empty String for result
        String result = new String("");
         
        // initializing empty stack
        Stack<Character> stack = new Stack<>();
         
        for (int i = 0; i<exp.length(); ++i)
        {
            char c = exp.charAt(i);
             
            // If the scanned character is an
            // operand, add it to output.
            if (Character.isLetterOrDigit(c))
                result += c;
              
            // If the scanned character is an '(',
            // push it to the stack.
            else if (c == '(')
                stack.push(c);
             
            //  If the scanned character is an ')',
            // pop and output from the stack
            // until an '(' is encountered.
            else if (c == ')')
            {
                while (!stack.isEmpty() &&
                        stack.peek() != '(')
                    result += stack.pop();
                 
                    stack.pop();
            }
            else // an operator is encountered
            {
                while (!stack.isEmpty() && Prec(c)
                         <= Prec(stack.peek())){
                   
                    result += stack.pop();
             }
                stack.push(c);
            }
      
        }
      
        // pop all the operators from the stack
        while (!stack.isEmpty()){
            if(stack.peek() == '(')
                return "Invalid Expression";
            result += stack.pop();
         }
        return result;
    }
   
    // Driver method
    public static void main(String[] args)
    {
        String exp = "a+b*(c^d-e)^(f+g*h)-i";
        System.out.println(infixToPostfix(exp));
    }
}

Python




# Python program to convert infix expression to postfix
 
# Class to convert the expression
class Conversion:
     
    # Constructor to initialize the class variables
    def __init__(self, capacity):
        self.top = -1
        self.capacity = capacity
        # This array is used a stack
        self.array = []
        # Precedence setting
        self.output = []
        self.precedence = {'+':1, '-':1, '*':2, '/':2, '^':3}
     
    # check if the stack is empty
    def isEmpty(self):
        return True if self.top == -1 else False
     
    # Return the value of the top of the stack
    def peek(self):
        return self.array[-1]
     
    # Pop the element from the stack
    def pop(self):
        if not self.isEmpty():
            self.top -= 1
            return self.array.pop()
        else:
            return "$"
     
    # Push the element to the stack
    def push(self, op):
        self.top += 1
        self.array.append(op)
 
    # A utility function to check is the given character
    # is operand
    def isOperand(self, ch):
        return ch.isalpha()
 
    # Check if the precedence of operator is strictly
    # less than top of stack or not
    def notGreater(self, i):
        try:
            a = self.precedence[i]
            b = self.precedence[self.peek()]
            return True if a  <= b else False
        except KeyError:
            return False
             
    # The main function that
    # converts given infix expression
    # to postfix expression
    def infixToPostfix(self, exp):
         
        # Iterate over the expression for conversion
        for i in exp:
            # If the character is an operand,
            # add it to output
            if self.isOperand(i):
                self.output.append(i)
             
            # If the character is an '(', push it to stack
            elif == '(':
                self.push(i)
 
            # If the scanned character is an ')', pop and
            # output from the stack until and '(' is found
            elif i == ')':
                while( (not self.isEmpty()) and
                                self.peek() != '('):
                    a = self.pop()
                    self.output.append(a)
                if (not self.isEmpty() and self.peek() != '('):
                    return -1
                else:
                    self.pop()
 
            # An operator is encountered
            else:
                while(not self.isEmpty() and self.notGreater(i)):
                    self.output.append(self.pop())
                self.push(i)
 
        # pop all the operator from the stack
        while not self.isEmpty():
            self.output.append(self.pop())
 
        print "".join(self.output)
 
# Driver program to test above function
exp = "a+b*(c^d-e)^(f+g*h)-i"
obj = Conversion(len(exp))
obj.infixToPostfix(exp)
 
# This code is contributed by Nikhil Kumar Singh(nickzuck_007)

C#




using System;
using System.Collections.Generic;
 
/* c# implementation to convert
infix expression to postfix*/
// Note that here we use Stack
// class for Stack operations
 
public  class Test
{
     
    // A utility function to return
    // precedence of a given operator
    // Higher returned value means higher precedence
    internal static int Prec(char ch)
    {
        switch (ch)
        {
        case '+':
        case '-':
            return 1;
 
        case '*':
        case '/':
            return 2;
 
        case '^':
            return 3;
        }
        return -1;
    }
 
    // The main method that converts given infix expression
    // to postfix expression. 
    public static string infixToPostfix(string exp)
    {
        // initializing empty String for result
        string result = "";
 
        // initializing empty stack
        Stack<char> stack = new Stack<char>();
 
        for (int i = 0; i < exp.Length; ++i)
        {
            char c = exp[i];
 
            // If the scanned character is an
            // operand, add it to output.
            if (char.IsLetterOrDigit(c))
            {
                result += c;
            }
 
            // If the scanned character is an '(',
            // push it to the stack.
            else if (c == '(')
            {
                stack.Push(c);
            }
 
            //  If the scanned character is an ')',
            // pop and output from the stack 
            // until an '(' is encountered.
            else if (c == ')')
            {
                while (stack.Count > 0 &&
                        stack.Peek() != '(')
                {
                    result += stack.Pop();
                }
 
                if (stack.Count > 0 && stack.Peek() != '(')
                {
                    return "Invalid Expression"; // invalid expression
                }
                else
                {
                    stack.Pop();
                }
            }
            else // an operator is encountered
            {
                while (stack.Count > 0 && Prec(c) <=
                                  Prec(stack.Peek()))
                {
                    result += stack.Pop();
                }
                stack.Push(c);
            }
 
        }
 
        // pop all the operators from the stack
        while (stack.Count > 0)
        {
            result += stack.Pop();
        }
 
        return result;
    }
 
    // Driver method 
    public static void Main(string[] args)
    {
        string exp = "a+b*(c^d-e)^(f+g*h)-i";
        Console.WriteLine(infixToPostfix(exp));
    }
}
 
// This code is contributed by Shrikant13

Javascript




<script>
    /* Javascript implementation to convert
    infix expression to postfix*/
     
    //Function to return precedence of operators
    function prec(c) {
        if(c == '^')
            return 3;
        else if(c == '/' || c=='*')
            return 2;
        else if(c == '+' || c == '-')
            return 1;
        else
            return -1;
    }
 
    // The main function to convert infix expression
    //to postfix expression
    function infixToPostfix(s) {
 
        let st = []; //For stack operations, we are using C++ built in stack
        let result = "";
 
        for(let i = 0; i < s.length; i++) {
            let c = s[i];
 
            // If the scanned character is
            // an operand, add it to output string.
            if((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9'))
                result += c;
 
            // If the scanned character is an
            // ‘(‘, push it to the stack.
            else if(c == '(')
                st.push('(');
 
            // If the scanned character is an ‘)’,
            // pop and to output string from the stack
            // until an ‘(‘ is encountered.
            else if(c == ')') {
                while(st[st.length - 1] != '(')
                {
                    result += st[st.length - 1];
                    st.pop();
                }
                st.pop();
            }
 
            //If an operator is scanned
            else {
                while(st.length != 0 && prec(s[i]) <= prec(st[st.length - 1])) {
                    result += st[st.length - 1];
                    st.pop();
                }
                st.push(c);
            }
        }
 
        // Pop all the remaining elements from the stack
        while(st.length != 0) {
            result += st[st.length - 1];
            st.pop();
        }
 
        document.write(result + "</br>");
    }
     
    let exp = "a+b*(c^d-e)^(f+g*h)-i";
    infixToPostfix(exp);
 
// This code is contributed by decode2207.
</script>
Output
abcd^e-fgh*+^*+i-

https://youtu.be/ysDharaQXkw?list=PLqM7alHXFySF7Lap-wi5qlaD8OEBx9RMV 
Quiz: Stack Questions



 

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above. 

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!