Square root of a number using log

For a given number find the square root using log function. Number may be int, float or double.

Examples:

Input  : n = 9
Output : 3

Input  : n = 2.93
Output : 1.711724



We can find square root of a number using sqrt() method.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to demonstrate finding
// square root of a number using sqrt()
#include<bits/stdc++.h>
  
int main(void)
{
    double n = 12;
    printf("%lf ", sqrt(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to demonstrate finding
// square root of a number using sqrt()
  
import java.io.*;
  
class GFG {
    public static void main (String[] args) {
    double n = 12;
    System.out.println(Math.sqrt(n));
  
  
// This code is contributed by akt_mit
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to demonstrate finding
# square root of a number using sqrt()
import math
  
if __name__=='__main__':
    n = 12
    print(math.sqrt(n))
  
# This code is contributed by
# Sanjit_Prasad

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to demonstrate finding
// square root of a number using sqrt()
using System;
  
class GFG
{
public static void Main()
{
    double n = 12;
    Console.Write(Math.Sqrt(n));
}
}
  
// This code is contributed
// by Akanksha Rai

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to demonstrate finding 
// square root of a number using sqrt() 
$n = 12; 
echo sqrt($n); 
  
// This code is contributed by jit_t
?>

chevron_right



Output :

3.464102 

We can also find square root using log2() library function:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to demonstrate finding
// square root of a number using log2()
#include<bits/stdc++.h>
  
double squareRoot(double n)
{
    return pow(2, 0.5*log2(n));
}
  
int main(void)
{
    double n = 12;
    printf("%lf ", squareRoot(n));
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to demonstrate finding 
// square root of a number using log2() 
import java.io.*;
  
class GFG 
{
static double squareRoot(double n) 
    return Math.pow(2, 0.5 * (Math.log(n) /
                              Math.log(2))); 
  
// Driver Code
public static void main (String[] args) 
{
    double n = 12
    System.out.println(squareRoot(n)); 
}
}
  
// This code is contributed by akt_mit 

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to demonstrate finding
# square root of a number using sqrt()
import math
  
# function to return squareroot
def squareRoot(n):
  
    return pow(2, 0.5 * math.log2(n))
  
# Driver program
  
n = 12
print(squareRoot(n))
  
# This code is contributed by
# Sanjit_Prasad

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to demonstrate finding 
// square root of a number using log2()
using System;
  
public class GFG{
      
static double squareRoot(double n) 
     return Math.Pow(2, 0.5 * (Math.Log(n) /Math.Log(2)));
  
      
    static public void Main (){
            double n = 12; 
            Console.WriteLine(squareRoot(n)); 
    }
//This code is contributed by akt_mit    
}

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to demonstrate finding 
// square root of a number using log2() 
function squareRoot($n
    return pow(2, 0.5 * log($n, 2)); 
  
// Driver Code
$n = 12; 
echo squareRoot($n); 
      
// This code is contributed by ajit
?>

chevron_right



Output:

3.464101615137755

How does above program work?

 let d be our answer for input number n
 then n(1/2) = d 
     apply log2 on both sides
      log2(n(1/2)) = log2(d)
      log2(d) = 1/2 * log2(n)
      d = 2(1/2 * log2(n)) 
      d = pow(2, 0.5*log2(n))  

This article is contributed by Tumma Umamaheswararao from Jntuh College of Engineering . If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.