# Split the number into N parts such that difference between the smallest and the largest part is minimum

Given two integers ‘X’ and ‘N’, the task is to split the integer ‘X’ into exactly ‘N’ parts such that:

X1 + X2 + X3 + … + Xn = X and the difference between the maximum and the minimum number from the sequence is minimized.

Print the sequence in the end, if the number cannot be divided into exactly ‘N’ parts then print ‘-1’ instead.**Examples:**

Input:X = 5, N = 3Output:1 2 2

Divide 5 into 3 parts such that the difference between the largest and smallest integer among

them is as minimal as possible. So we divide 5 as 1 + 2 + 2.Input:X = 25, N = 5Output:5 5 5 5 5

**Approach:** There is always a way of splitting the number if X >= N.

- If the number is being split into exactly ‘N’ parts then every part will have the value X/N and the remaining X%N part can be distributed among any X%N numbers.
- Thus, if X % N == 0 then the minimum difference will always be ‘0’ and the sequence will contain all equal numbers i.e. x/n.
- Else, the difference will be ‘1’ and the sequence will be X/N, X/N, …, (X/N)+1, (X/N)+1..

Below is the implementation of the above approach:

## C++

`// CPP implementation of the approach` `#include<bits/stdc++.h>` `using` `namespace` `std;;` `// Function that prints` `// the required sequence` `void` `split(` `int` `x, ` `int` `n)` `{` `// If we cannot split the` `// number into exactly 'N' parts` `if` `(x < n)` `cout<<` `"-1"` `<<` `" "` `;` ` ` ` ` `// If x % n == 0 then the minimum` ` ` `// difference is 0 and all` ` ` `// numbers are x / n` ` ` `else` `if` `(x % n == 0)` ` ` `{` ` ` `for` `(` `int` `i=0;i<n;i++)` ` ` `cout<<(x/n)<<` `" "` `;` ` ` `}` ` ` `else` ` ` `{` ` ` `// upto n-(x % n) the values` ` ` `// will be x / n` ` ` `// after that the values` ` ` `// will be x / n + 1` ` ` `int` `zp = n - (x % n);` ` ` `int` `pp = x/n;` ` ` `for` `(` `int` `i=0;i<n;i++)` ` ` `{` ` ` `if` `(i>= zp)` ` ` `cout<<(pp + 1)<<` `" "` `;` ` ` `else` ` ` `cout<<pp<<` `" "` `;` ` ` `}` ` ` `}` `}` ` ` `// Driver code` `int` `main()` `{` ` ` `int` `x = 5;` `int` `n = 3;` `split(x, n);` `}` `//THis code is contributed` `// Surendra_Gangwar` |

## Java

`// Java implementation of the approach` ` ` `class` `GFG{` `// Function that prints` `// the required sequence` `static` `void` `split(` `int` `x, ` `int` `n)` `{` ` ` `// If we cannot split the` `// number into exactly 'N' parts` `if` `(x < n)` `System.out.print(` `"-1 "` `);` ` ` ` ` ` ` ` ` `// If x % n == 0 then the minimum` ` ` `// difference is 0 and all` ` ` `// numbers are x / n` ` ` `else` `if` `(x % n == ` `0` `)` ` ` `{` ` ` `for` `(` `int` `i=` `0` `;i<n;i++)` ` ` `System.out.print((x/n)+` `" "` `);` ` ` `}` ` ` `else` ` ` `{` ` ` ` ` `// upto n-(x % n) the values` ` ` `// will be x / n` ` ` `// after that the values` ` ` `// will be x / n + 1` ` ` `int` `zp = n - (x % n);` ` ` `int` `pp = x/n;` ` ` `for` `(` `int` `i=` `0` `;i<n;i++)` ` ` `{` ` ` ` ` `if` `(i>= zp)` ` ` `System.out.print((pp + ` `1` `)+` `" "` `);` ` ` `else` ` ` `System.out.print(pp+` `" "` `);` ` ` `}` ` ` `}` `}` ` ` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `x = ` `5` `;` `int` `n = ` `3` `;` `split(x, n);` ` ` `}` `}` `//This code is contributed by mits` |

## Python3

`# Python3 implementation of the approach` `# Function that prints` `# the required sequence` `def` `split(x, n):` ` ` `# If we cannot split the` ` ` `# number into exactly 'N' parts` ` ` `if` `(x < n):` ` ` `print` `(` `-` `1` `)` ` ` `# If x % n == 0 then the minimum` ` ` `# difference is 0 and all` ` ` `# numbers are x / n` ` ` `elif` `(x ` `%` `n ` `=` `=` `0` `):` ` ` `for` `i ` `in` `range` `(n):` ` ` `print` `(x` `/` `/` `n, end ` `=` `" "` `)` ` ` `else` `:` ` ` `# upto n-(x % n) the values` ` ` `# will be x / n` ` ` `# after that the values` ` ` `# will be x / n + 1` ` ` `zp ` `=` `n ` `-` `(x ` `%` `n)` ` ` `pp ` `=` `x` `/` `/` `n` ` ` `for` `i ` `in` `range` `(n):` ` ` `if` `(i>` `=` `zp):` ` ` `print` `(pp ` `+` `1` `, end ` `=` `" "` `)` ` ` `else` `:` ` ` `print` `(pp, end ` `=` `" "` `)` ` ` `# Driver code ` `x ` `=` `5` `n ` `=` `3` `split(x, n)` |

## C#

`// C# implementation of the approach` `using` `System;` `public` `class` `GFG{` ` ` `// Function that prints` `// the required sequence` `static` `void` `split(` `int` `x, ` `int` `n)` `{` `// If we cannot split the` `// number into exactly 'N' parts` `if` `(x < n)` `Console.WriteLine(` `"-1 "` `);` ` ` ` ` `// If x % n == 0 then the minimum` ` ` `// difference is 0 and all` ` ` `// numbers are x / n` ` ` `else` `if` `(x % n == 0)` ` ` `{` ` ` `for` `(` `int` `i=0;i<n;i++)` ` ` `Console.Write((x/n)+` `" "` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `// upto n-(x % n) the values` ` ` `// will be x / n` ` ` `// after that the values` ` ` `// will be x / n + 1` ` ` `int` `zp = n - (x % n);` ` ` `int` `pp = x/n;` ` ` `for` `(` `int` `i=0;i<n;i++)` ` ` `{` ` ` `if` `(i>= zp)` ` ` `Console.Write((pp + 1)+` `" "` `);` ` ` `else` ` ` `Console.Write(pp+` `" "` `);` ` ` `}` ` ` `}` `}` ` ` `// Driver code` `static` `public` `void` `Main (){` `int` `x = 5;` `int` `n = 3;` `split(x, n);` `}` `}` `//This code is contributed by Sachin.` |

## PHP

`<?php` `// PHP implementation of the approach` `// Function that prints` `// the required sequence` `function` `split(` `$x` `, ` `$n` `)` `{` ` ` `// If we cannot split the` ` ` `// number into exactly 'N' parts` ` ` `if` `(` `$x` `< ` `$n` `)` ` ` `echo` `(-1);` ` ` `// If x % n == 0 then the minimum` ` ` `// difference is 0 and all` ` ` `// numbers are x / n` ` ` `else` `if` `(` `$x` `% ` `$n` `== 0)` ` ` `{` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `{` ` ` `echo` `(` `$x` `/ ` `$n` `);` ` ` `echo` `(` `" "` `);` ` ` `}` ` ` `}` ` ` ` ` `else` ` ` `{` ` ` `// upto n-(x % n) the values` ` ` `// will be x / n` ` ` `// after that the values` ` ` `// will be x / n + 1` ` ` `$zp` `= ` `$n` `- (` `$x` `% ` `$n` `);` ` ` `$pp` `= ` `$x` `/ ` `$n` `;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `{` ` ` `if` `(` `$i` `>= ` `$zp` `)` ` ` `{` ` ` `echo` `(int)` `$pp` `+ 1;` ` ` `echo` `(` `" "` `);` ` ` `}` ` ` `else` ` ` `{` ` ` `echo` `(int)` `$pp` `;` ` ` `echo` `(` `" "` `);` ` ` `}` ` ` `}` ` ` `}` `}` `// Driver code ` `$x` `= 5;` `$n` `= 3;` `split( ` `$x` `, ` `$n` `);` `// This code is contributed` `// by Shivi_Aggarwal` `?>` |

## Javascript

`<script>` `// JavaScript implementation of the above approach` `// Function that prlets` `// the required sequence` `function` `split(x, n)` `{` ` ` `// If we cannot split the` `// number leto exactly 'N' parts` `if` `(x < n)` `document.write(` `"-1 "` `);` ` ` ` ` ` ` ` ` `// If x % n == 0 then the minimum` ` ` `// difference is 0 and all` ` ` `// numbers are x / n` ` ` `else` `if` `(x % n == 0)` ` ` `{` ` ` `for` `(let i=0;i<n;i++)` ` ` `document.write((x/n)+` `" "` `);` ` ` `}` ` ` `else` ` ` `{` ` ` ` ` `// upto n-(x % n) the values` ` ` `// will be x / n` ` ` `// after that the values` ` ` `// will be x / n + 1` ` ` `let zp = n - (x % n);` ` ` `let pp = Math.floor(x/n);` ` ` `for` `(let i=0;i<n;i++)` ` ` `{` ` ` ` ` `if` `(i>= zp)` ` ` `document.write((pp + 1)+` `" "` `);` ` ` `else` ` ` `document.write(pp+` `" "` `);` ` ` `}` ` ` `}` `}` `// driver code` ` ` `let x = 5;` ` ` `let n = 3;` ` ` `split(x, n);` ` ` `</script>` |

**Output:**

1 2 2

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.