Skip to content
Related Articles
Open in App
Not now

Related Articles

Split Parenthesis Sequence into maximum valid Substrings

Improve Article
Save Article
  • Difficulty Level : Medium
  • Last Updated : 09 Jan, 2023
Improve Article
Save Article

Given a String S which contains balanced Parentheses Brackets ( i.e ‘(‘ and ‘)’ ), we need to split them in such a way that they form the maximum number of balanced groups.

Examples:

Input:  S = “()()(()())()”
Output:  (), (), (()()), ()

Input:  S = “()()”
Output:  (), ()

Input:  S = “()()(())”
Output:  (), (), (())

Approach: To solve the problem follow the below idea:

We need to declare two variables, one to keep the count of Opening Braces (say count_o) and the other to keep the count of the Closing Braces (i.e count _c). Then, we need to check when count_o and tcount _c is  equal and then we need to push the current substring as a part of the result.

Follow the steps to solve the problem:

  • Declare a vector (say res) to store the answer.
  • Declare two counters count_o for opening braces and count_c for closing braces.
  • Maintain a current substring by  curr_str.
  • Iterate through the string:
    • Increment either count_o or count_c according to the combination of braces in the string.
    • When count_o becomes equal to count_c, store the curr_str in res and redefine curr_str = “”.
  • At last, return res as the result.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the valid substrings
vector<string> Balanced_Groups(string s)
{
    vector<string> res;
 
    // To keep the count of opening braces.
    int count_o = 0;
 
    // To keep the count of closing braces.
    int count_c = 0;
 
    // To maintain the current string.
    string curr_str = "";
 
    int n = s.size();
 
    // If the size of the string is zero.
    if (n == 0)
        return res;
 
    // Loop to find the valid substrings
    for (int i = 0; i < n; i++) {
        curr_str += s[i];
 
        // Incrementing the count of
        // opening braces.
        if (s[i] == '(') {
            count_o++;
        }
 
        // Incrementing the count of
        // closing braces.
        if (s[i] == ')') {
            count_c++;
        }
 
        // To check for a balanced group
        // and push it to vector res.
        if (count_o == count_c) {
            res.push_back(curr_str);
            curr_str = "";
        }
    }
 
    // Returning the vector res.
    return res;
}
 
// Driver Code
int main()
{
    string s = "()()(()())()";
    vector<string> v;
 
    // Function call
    v = Balanced_Groups(s);
 
    for (auto i : v)
        cout << i << " ";
 
    return 0;
}

Java




// Java code to implement the approach
import java.util.*;
 
public class Main
{
   
  // Driver Code
  public static void main(String[] args)
  {
    String s = "()()(()())()";
    List<String> v = new ArrayList<>();
 
    // Function call
    v = Balanced_Groups(s);
 
    for (String i : v) {
      System.out.print(i + " ");
    }
  }
 
  // Function to find the valid substrings
  public static List<String> Balanced_Groups(String s)
  {
    List<String> res = new ArrayList<>();
 
    // To keep the count of opening braces.
    int count_o = 0;
 
    // To keep the count of closing braces.
    int count_c = 0;
 
    // To maintain the current string.
    String curr_str = "";
 
    int n = s.length();
 
    // If the size of the string is zero.
    if (n == 0)
      return res;
 
    // Loop to find the valid substrings
    for (int i = 0; i < n; i++) {
      curr_str += s.charAt(i);
 
      // Incrementing the count of
      // opening braces.
      if (s.charAt(i) == '(') {
        count_o++;
      }
 
      // Incrementing the count of
      // closing braces.
      if (s.charAt(i) == ')') {
        count_c++;
      }
 
      // To check for a balanced group
      // and push it to vector res.
      if (count_o == count_c) {
        res.add(curr_str);
        curr_str = "";
      }
    }
    // Returning the vector res.
    return res;
  }
}
 
// This code is contributed by Tapesh(tapeshdua420)

Python3




# Python code to implement the approach
 
# Function to find the valid substrings
def Balanced_Groups(s):
    res = []
 
    # To keep the count of opening braces.
    count_o = 0
 
    # To keep the count of closing braces.
    count_c = 0
 
    # To maintain the current string.
    curr_str = ""
 
    n = len(s)
 
    # If the size of the string is zero.
    if n == 0:
        return res
 
    # Loop to find the valid substrings
    for i in range(n):
        curr_str += s[i]
 
        # Incrementing the count of
        # opening braces.
        if s[i] == '(':
            count_o += 1
 
        # Incrementing the count of
        # closing braces.
        if s[i] == ')':
            count_c += 1
 
        # To check for a balanced group
        # and push it to vector res.
        if count_o == count_c:
            res.append(curr_str)
            curr_str = ""
 
    # Returning the vector res.
    return res
 
 
# Driver Code
if __name__ == '__main__':
    s = "()()(()())()"
    v = []
 
    # Function call
    v = Balanced_Groups(s)
    print(v)
 
# This code is contributed by Tapesh(tapeshdua420)

C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class Program
{
 
  // Driver Code
  static void Main(string[] args)
  {
    string s = "()()(()())()";
    List<string> v = new List<string>();
 
    // Function call
    v = Balanced_Groups(s);
 
    foreach(string i in v) { Console.Write(i + " "); }
  }
 
  // Function to find the valid substrings
  public static List<string> Balanced_Groups(string s)
  {
    List<string> res = new List<string>();
 
    // To keep the count of opening braces.
    int count_o = 0;
 
    // To keep the count of closing braces.
    int count_c = 0;
 
    // To maintain the current string.
    string curr_str = "";
 
    int n = s.Length;
 
    // If the size of the string is zero.
    if (n == 0)
      return res;
 
    // Loop to find the valid substrings
    for (int i = 0; i < n; i++) {
      curr_str += s[i];
 
      // Incrementing the count of
      // opening braces.
      if (s[i] == '(') {
        count_o++;
      }
 
      // Incrementing the count of
      // closing braces.
      if (s[i] == ')') {
        count_c++;
      }
 
      // To check for a balanced group
      // and push it to vector res.
      if (count_o == count_c) {
        res.Add(curr_str);
        curr_str = "";
      }
    }
 
    // Returning the vector res.
    return res;
  }
}
 
// This code is contributed by Tapesh(tapeshdua420)

Javascript




   // JavaScript code for the above approach
 
   // Function to find the valid substrings
   function Balanced_Groups(s) {
     let res = [];
 
     // To keep the count of opening braces.
     let count_o = 0;
 
     // To keep the count of closing braces.
     let count_c = 0;
 
     // To maintain the current string.
     let curr_str = "";
 
     let n = s.length;
 
     // If the size of the string is zero.
     if (n == 0)
       return res;
 
     // Loop to find the valid substrings
     for (let i = 0; i < n; i++) {
       curr_str += s[i];
 
       // Incrementing the count of
       // opening braces.
       if (s[i] == '(') {
         count_o++;
       }
 
       // Incrementing the count of
       // closing braces.
       if (s[i] == ')') {
         count_c++;
       }
 
       // To check for a balanced group
       // and push it to vector res.
       if (count_o == count_c) {
         res.push(curr_str);
         curr_str = "";
       }
     }
 
     // Returning the vector res.
     return res;
   }
 
   // Driver Code
   let s = "()()(()())()";
   let v;
 
   // Function call
   v = Balanced_Groups(s);
 
   for (let i of v)
     process.stdout.write(i + " ");
 
// This code is contributed by Potta Lokesh

Output

() () (()()) () 

Time Complexity: O(N), as only one for loop is used.
Auxiliary Space: O(N), an extra storage is used to store the valid substrings.


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!