Skip to content
Related Articles

Related Articles

Split array into minimum number of subsets such that elements of all pairs are present in different subsets at least once
  • Last Updated : 08 Jan, 2021

Given an array arr[] consisting of N distinct integers, the task is to find the minimum number of times the array needs to be split into two subsets such that elements of each pair is present into two different subsets at least once.

Examples:

Input: arr[] = { 3, 4, 2, 1, 5 } 
Output:
Explanation: 
Possible pairs are { (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5) } 
Splitting the array into { 1, 2 } and { 3, 4, 5 } 
Elements of each of the pairs { (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5) } are present into two different subsets. 
Splitting the array into { 1, 3 } and { 2, 4, 5 } 
Elements of each of the pairs { (1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (3, 5) } are present into two different subsets. 
Splitting the array into { 1, 3, 4 } and { 2, 5 } 
Elements of each of the pairs { (1, 2), (1, 5), (2, 3), (3, 5), (2, 4), (4, 5) } are present into two different subsets. 
Since elements of each pair of the array is present in two different subsets at least once, the required output is 3.

Input: arr[] = { 2, 1, 3 } 
Output:
 

Approach:The idea is to always split the array into two subsets of size floor(N / 2) and ceil(N / 2). Before each partition just swap the value of arr[i] with arr[N / 2 + i]. Follow the steps given below to solve the problem:



Below is the C++ implementation of above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find minimum count of ways to split
// the array into two subset such that elements of
// each pair occurs in two different subset
int MinimumNoOfWays(int arr[], int n)
{
 
    // Stores minimum count of ways to split array
    // into two subset such that elements of
    // each pair occurs in two different subset
    int mini_no_of_ways;
 
    // If N is odd
    if (n % 2 == 0) {
        mini_no_of_ways = n / 2;
    }
    else {
        mini_no_of_ways = n / 2 + 1;
    }
    return mini_no_of_ways;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 4, 2, 1, 5 };
    int N = sizeof(arr) / sizeof(arr[0]);
    cout << MinimumNoOfWays(arr, N);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
   
class GFG{
   
// Function to find minimum count of ways to split
// the array into two subset such that elements of
// each pair occurs in two different subset
static int MinimumNoOfWays(int arr[], int n)
{
  
    // Stores minimum count of ways to split array
    // into two subset such that elements of
    // each pair occurs in two different subset
    int mini_no_of_ways;
  
    // If N is odd
    if (n % 2 == 0) {
        mini_no_of_ways = n / 2;
    }
    else {
        mini_no_of_ways = n / 2 + 1;
    }
    return mini_no_of_ways;
}
   
// Driver code
public static void main(String[] args)
{
    int arr[] = { 3, 4, 2, 1, 5 };
    int N = arr.length;
    System.out.print(MinimumNoOfWays(arr, N));
}
}
 
// This code is contributed by sanjoy_62

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to to implement
# the above approach
 
# Function to find minimum count of ways to split
# the array into two subset such that elements of
# each pair occurs in two different subset
def MinimumNoOfWays(arr, n):
   
    # Stores minimum count of ways to split array
    # into two subset such that elements of
    # each pair occurs in two different subset
    min_no_of_ways = 0
     
    # if n is even
    if (n % 2 == 0):
        mini_no_of_ways = n // 2
         
    # n is odd
    else:
        mini_no_of_ways = n // 2 + 1
         
    return mini_no_of_ways
 
# driver code
if __name__ == '__main__':
    arr = [3, 4, 1, 2, 5]
    n = len(arr)
    print(MinimumNoOfWays(arr, n))
 
# This code is contributed by MuskanKalra1

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
class GFG
{
   
// Function to find minimum count of ways to split
// the array into two subset such that elements of
// each pair occurs in two different subset
static int MinimumNoOfWays(int []arr, int n)
{
  
    // Stores minimum count of ways to split array
    // into two subset such that elements of
    // each pair occurs in two different subset
    int mini_no_of_ways;
  
    // If N is odd
    if (n % 2 == 0)
    {
        mini_no_of_ways = n / 2;
    }
    else
    {
        mini_no_of_ways = n / 2 + 1;
    }
    return mini_no_of_ways;
}
   
  // Driver code
  public static void Main(string[] args)
  {
      int[] arr = { 3, 4, 2, 1, 5 };
      int N = arr.Length;
      Console.WriteLine(MinimumNoOfWays(arr, N));
  }
}
 
// This code is contributed by AnkThon

chevron_right


Output: 

3

 

Time Complexity: O(1) 
Space Complexity: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :