Skip to content
Related Articles

Related Articles

Split array into K non-empty subsets such that sum of their maximums and minimums is maximized
  • Last Updated : 27 Apr, 2021

Given two arrays arr[] and S[] consisting of N and K integers, the task is to find the maximum sum of minimum and maximum of each subset after splitting the array into K subsets such that the size of each subset is equal to one of the elements in the array S[].

Examples:

Input: arr[] = {1, 13, 7, 17}, S[] = {1, 3}
Output: 48
Explanation: Consider splitting the array as {17}, {1, 7, 13}, such that the size of subsets are 1 and 3 respectively, which is present in the array S[].
The sum of the maximum and minimum of each subset is (17 + 17 + 1 + 13) = 48.

Input: arr[ ] = {5, 1, -30, 0, 11, 20, 19}, S[] = {4, 1, 2} 
Output: 45

 

Approach: The given problem can be solved using the Greedy Approach, the idea is to insert the first K maximum elements in each group and then start filling the smaller-sized groups first with greater elements. Follow the steps below to solve the problem:



  • Initialize a variable, say ans as 0, to store the sum of the maximum and the minimum of all the subsets.
  • Sort the array arr[] in descending order.
  • Sort the array S[] in ascending order.
  • Find the sum of the first K elements of the array and store it in the variable ans, and decrement all elements of the S[] by 1.
  • Initialize a variable, say counter as K – 1, to store the index of the minimum element of each subset.
  • Traverse the array S[] and increment counter by S[i] and add the value of arr[counter] to the ans.
  • After completing the above steps, print the values of ans as the result.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function find maximum sum of
// minimum and maximum of K subsets
int maximumSum(int arr[], int S[],
               int N, int K)
{
    // Stores the result
    int ans = 0;
 
    // Sort the array arr[] in
    // decreasing order
    sort(arr, arr + N, greater<int>());
 
    // Traverse the range [0, K]
    for (int i = 0; i < K; i++)
        ans += arr[i];
 
    // Sort the array S[] in
    // ascending order
    sort(S, S + K);
 
    // Traverse the array S[]
    for (int i = 0; i < K; i++) {
 
        // If S{i] is 1
        if (S[i] == 1)
            ans += arr[i];
 
        S[i]--;
    }
 
    // Stores the index of the minimum
    // element of the i-th subset
    int counter = K - 1;
 
    // Traverse the array S[]
    for (int i = 0; i < K; i++) {
 
        // Update the counter
        counter = counter + S[i];
 
        if (S[i] != 0)
            ans += arr[counter];
    }
 
    // Return the resultant sum
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 13, 7, 17 };
    int S[] = { 1, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = sizeof(S) / sizeof(S[0]);
    cout << maximumSum(arr, S, N, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Function find maximum sum of
// minimum and maximum of K subsets
static int maximumSum(int arr[], int S[],
                      int N, int K)
{
     
    // Stores the result
    int ans = 0;
 
    // Sort the array arr[] in
    // decreasing order
    Arrays.sort(arr);
    for(int i = 0; i < N / 2; i++)
    {
        int temp = arr[i];
        arr[i] = arr[N - 1 - i];
        arr[N - 1 - i] = temp;
    }
 
    // Traverse the range [0, K]
    for(int i = 0; i < K; i++)
        ans += arr[i];
 
    // Sort the array S[] in
    // ascending order
    Arrays.sort(S);
 
    // Traverse the array S[]
    for(int i = 0; i < K; i++)
    {
         
        // If S{i] is 1
        if (S[i] == 1)
            ans += arr[i];
 
        S[i]--;
    }
 
    // Stores the index of the minimum
    // element of the i-th subset
    int counter = K - 1;
 
    // Traverse the array S[]
    for(int i = 0; i < K; i++)
    {
 
        // Update the counter
        counter = counter + S[i];
 
        if (S[i] != 0)
            ans += arr[counter];
    }
 
    // Return the resultant sum
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 1, 13, 7, 17 };
    int S[] = { 1, 3 };
    int N = arr.length;
    int K = S.length;
     
    System.out.println(maximumSum(arr, S, N, K));
}
}
 
// This code is contributed by Kingash

Python3




# Python3 program for the above approach
 
# Function find maximum sum of
# minimum and maximum of K subsets
def maximumSum(arr, S, N, K):
     
    # Stores the result
    ans = 0
 
    # Sort the array arr[] in
    # decreasing order
    arr = sorted(arr)[::-1]
 
    # Traverse the range [0, K]
    for i in range(K):
        ans += arr[i]
 
    # Sort the array S[] in
    # ascending order
    S = sorted(S)
 
    # Traverse the array S[]
    for i in range(K):
         
        # If S{i] is 1
        if (S[i] == 1):
            ans += arr[i]
 
        S[i] -= 1
 
    # Stores the index of the minimum
    # element of the i-th subset
    counter = K - 1
 
    # Traverse the array S[]
    for i in range(K):
         
        # Update the counter
        counter = counter + S[i]
 
        if (S[i] != 0):
            ans += arr[counter]
 
    # Return the resultant sum
    return ans
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 1, 13, 7, 17 ]
    S = [ 1, 3 ]
    N = len(arr)
    K = len(S)
     
    print (maximumSum(arr, S, N, K))
 
# This code is contributed by mohit kumar 29

C#




// C# program for the above approach
using System;
class GFG {
 
    // Function find maximum sum of
    // minimum and maximum of K subsets
    static int maximumSum(int[] arr, int[] S, int N, int K)
    {
 
        // Stores the result
        int ans = 0;
 
        // Sort the array arr[] in
        // decreasing order
        Array.Sort(arr);
        for (int i = 0; i < N / 2; i++) {
            int temp = arr[i];
            arr[i] = arr[N - 1 - i];
            arr[N - 1 - i] = temp;
        }
 
        // Traverse the range [0, K]
        for (int i = 0; i < K; i++)
            ans += arr[i];
 
        // Sort the array S[] in
        // ascending order
        Array.Sort(S);
 
        // Traverse the array S[]
        for (int i = 0; i < K; i++) {
 
            // If S{i] is 1
            if (S[i] == 1)
                ans += arr[i];
 
            S[i]--;
        }
 
        // Stores the index of the minimum
        // element of the i-th subset
        int counter = K - 1;
 
        // Traverse the array S[]
        for (int i = 0; i < K; i++) {
 
            // Update the counter
            counter = counter + S[i];
 
            if (S[i] != 0)
                ans += arr[counter];
        }
 
        // Return the resultant sum
        return ans;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int[] arr = { 1, 13, 7, 17 };
        int[] S = { 1, 3 };
        int N = arr.Length;
        int K = S.Length;
 
        Console.WriteLine(maximumSum(arr, S, N, K));
    }
}
 
// This code is contributed by ukasp.
Output: 
48

 

Time Complexity: O(N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :