Skip to content
Related Articles

Related Articles

Improve Article

Split an array into equal length subsequences consisting of equal elements only

  • Last Updated : 14 May, 2021

Given an array arr[] of size N, the task is to check if it is possible to split the array arr[] into different subsequences of equal size such that each element of the subsequence are equal. If found to be true, then print “YES”. Otherwise, print “NO”.

Examples:

Input: arr[] = {1, 2, 3, 4, 4, 3, 2, 1}
Output: YES
Explanation: Possible partition: {1, 1}, {2, 2}, {3, 3}, {4, 4}.

Input: arr[] = {1, 1, 1, 2, 2, 2, 3, 3}
Output: NO

Approach: The idea is based on the following observation: Let the frequency of arr[i] be Ci, then these elements must be broken down into subsequences of X such that Ci % X = 0. This must be YES for every index i. To satisfy this, the value of X should be equal to the greatest common divisor(GCD) of all Ci (1≤i≤N). If X is greater than 1, then print YES otherwise print NO.



Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the GCD
// of two numbers a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to check if it is possible to
// split the array into equal length subsequences
// such that all elements in the subsequence are equal
void splitArray(int arr[], int N)
{
 
    // Store frequencies of
    // array elements
    map<int, int> mp;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Update frequency of arr[i]
        mp[arr[i]]++;
    }
 
    // Store the GCD of frequencies
    // of all array elements
    int G = 0;
 
    // Traverse the map
    for (auto i : mp) {
 
        // Update GCD
        G = gcd(G, i.second);
    }
 
    // If the GCD is greater than 1,
    // print YES otherwise print NO
    if (G > 1)
        cout << "YES";
    else
        cout << "NO";
}
 
// Driver Code
int main()
{
 
    // Given array
    int arr[] = { 1, 2, 3, 4, 4, 3, 2, 1 };
 
    // Store the size of the array
    int n = sizeof(arr) / sizeof(arr[0]);
 
    splitArray(arr, n);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG
{
 
    // Function to find the GCD
    // of two numbers a and b
    int gcd(int a, int b)
    {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
 
    // Function to check if it is possible to
    // split the array into equal length subsequences
    // such that all elements in the subsequence are equal
    void splitArray(int arr[], int N)
    {
 
        // Store frequencies of
        // array elements
        TreeMap<Integer, Integer> mp
            = new TreeMap<Integer, Integer>();
 
        // Traverse the array
        for (int i = 0; i < N; i++)
        {
 
            // Update frequency of arr[i]
            if (mp.containsKey(arr[i]))
            {
                mp.put(arr[i], mp.get(arr[i]) + 1);
            }
            else
            {
                mp.put(arr[i], 1);
            }
        }
 
        // Store the GCD of frequencies
        // of all array elements
        int G = 0;
 
        // Traverse the map
        for (Map.Entry<Integer, Integer> m :
             mp.entrySet())
        {
           
            // update gcd
            Integer i = m.getValue();
            G = gcd(G, i.intValue());
        }
 
        // If the GCD is greater than 1,
        // print YES otherwise print NO
        if (G > 1)
            System.out.print("YES");
        else
            System.out.print("NO");
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        // Given array
        int[] arr = new int[] { 1, 2, 3, 4, 4, 3, 2, 1 };
 
        // Store the size of the array
        int n = arr.length;
        new GFG().splitArray(arr, n);
    }
}
 
// This code is contributed by abhishekgiri1

Python3




# Python3 program for the above approach
from collections import defaultdict
 
# Function to find the GCD
# of two numbers a and b
def gcd(a, b):
     
    if (b == 0):
        return a
         
    return gcd(b, a % b)
 
# Function to check if it is possible
# to split the array into equal length
# subsequences such that all elements
# in the subsequence are equal
def splitArray(arr, N):
     
    # Store frequencies of
    # array elements
    mp = defaultdict(int)
     
    # Traverse the array
    for i in range(N):
         
        # Update frequency of arr[i]
        mp[arr[i]] += 1
 
    # Store the GCD of frequencies
    # of all array elements
    G = 0
 
    # Traverse the map
    for i in mp:
 
        # Update GCD
        G = gcd(G, mp[i])
 
    # If the GCD is greater than 1,
    # print YES otherwise print NO
    if (G > 1):
        print("YES")
    else:
        print("NO")
 
# Driver Code
if __name__ == "__main__":
     
    # Given array
    arr = [ 1, 2, 3, 4, 4, 3, 2, 1 ]
 
    # Store the size of the array
    n = len(arr)
 
    splitArray(arr, n)
 
# This code is contributed by chitranayal

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
class GFG{
     
// Function to find the GCD
// of two numbers a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
 
// Function to check if it is possible to
// split the array into equal length subsequences
// such that all elements in the subsequence are equal
static void splitArray(int[] arr, int n)
{
 
    // Store frequencies of
    // array elements
    Dictionary<int,
             int> mp = new Dictionary<int,
                                      int>();
 
    // Traverse the array
    for(int i = 0; i < n; ++i)
    {
           
        // Update frequency of
        // each array element
        if (mp.ContainsKey(arr[i]) == true)
        mp[arr[i]] += 1;
      else
        mp[arr[i]] = 1;
    }
 
    // Store the GCD of frequencies
    // of all array elements
    int G = 0;
 
    // Traverse the map
    foreach (KeyValuePair<int, int> i in mp)
    {
 
        // Update GCD
        G = gcd(G, i.Value);
    }
 
    // If the GCD is greater than 1,
    // print YES otherwise print NO
    if (G > 1)
        Console.Write("YES");
    else
        Console.Write("NO");
}
 
// Driver Code
public static void Main()
{
   
    // Given array
    int[] arr = { 1, 2, 3, 4, 4, 3, 2, 1 };
 
    // Store the size of the array
    int n = arr.Length;
    splitArray(arr, n);
}
}
 
// This code is contributed by sanjoy_62.

Javascript




<script>
 
// Javascript program for the above approach
 
// Function to find the GCD
// of two numbers a and b
function gcd(a, b)
{
    if (b == 0)
        return a;
         
    return gcd(b, a % b);
}
 
// Function to check if it is
// possible to split the array
// into equal length subsequences
// such that all elements in the
// subsequence are equal
function splitArray(arr, N)
{
     
    // Store frequencies of
    // array elements
    var mp = new Map();
 
    // Traverse the array
    for(var i = 0; i < N; i++)
    {
         
        // Update frequency of arr[i]
        if (mp.has(arr[i]))
        {
            mp.set(arr[i], mp.get(arr[i]) + 1);
        }
        else
        {
            mp.set(arr[i], 1);
        }
    }
 
    // Store the GCD of frequencies
    // of all array elements
    var G = 0;
 
    // Traverse the map
    mp.forEach((value, key) => {
         
        // Update GCD
        G = gcd(G, value);
    });
 
    // If the GCD is greater than 1,
    // print YES otherwise print NO
    if (G > 1)
        document.write("YES");
    else
        document.write("NO");
}
 
// Driver Code
 
// Given array
var arr = [ 1, 2, 3, 4, 4, 3, 2, 1 ];
 
// Store the size of the array
var n = arr.length;
splitArray(arr, n);
 
// This code is contributed by rutvik_56
 
</script>
Output: 
YES

 

Time Complexity: O(N * log(N))
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :