Given an array **A[]** consisting of **N** integers, the task is to split the array **A[]** into subsets having equal sum and of length equal to elements in array **B[]**.

**Examples:**

Input:A[] = {17, 13, 21, 20, 50, 29}, B[] = {2, 3, 1}Output:

21 29

17 13 20

50

Input:A[] = { 1, 2, 3, 4, 5, 6}, B[] = { 2, 2, 2}Output:

1 6

2 5

3 4

**Approach:** Follow the steps below to solve the problem:

- Since the count of subsets is already given, calculate the sum of each subset.
- Traverse through each element of array B[], find each possible combination of length B[i] and check if the sum of the combination is equal to the desired sum or not.
- Repeat the above steps for every array element B[i] and print the final answer

Below is the implementation of the above approach:

## Python

`# Python Program to implement` `# the above approach` `from` `itertools ` `import` `combinations` ` ` `# Function to split elements of first` `# array into subsets of size given as` `# elements in the second array` `def` `main(A, B):` ` ` ` ` `# Required sum of subsets` ` ` `req_sum ` `=` `sum` `(A) ` `/` `/` `len` `(B)` ` ` ` ` `# Stores the subsets` ` ` `final ` `=` `[]` ` ` ` ` `# Iterate the array B[]` ` ` `for` `i ` `in` `B:` ` ` ` ` `# Generate all possible` ` ` `# combination of length B[i]` ` ` `temp ` `=` `list` `(combinations(A, i))` ` ` ` ` `# Iterate over all the combinations` ` ` `for` `j ` `in` `temp:` ` ` ` ` `# If the sum is equal to the ` ` ` `# required sum of subsets` ` ` `if` `(` `sum` `(j) ` `=` `=` `req_sum):` ` ` ` ` `# Store the subset` ` ` `temp ` `=` `list` `(j)` ` ` `final.append(temp)` ` ` ` ` `for` `k ` `in` `temp:` ` ` ` ` `# Removing the subset` ` ` `# from the array` ` ` `A.remove(k)` ` ` `break` ` ` ` ` `# Printing the final result` ` ` `print` `(final)` ` ` ` ` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `# Value of array A and B` ` ` `A ` `=` `[` `1` `, ` `2` `, ` `3` `, ` `4` `, ` `5` `, ` `6` `]` ` ` `B ` `=` `[` `2` `, ` `2` `, ` `2` `]` ` ` ` ` `# Function call` ` ` `main(A, B)` |

**Output:**

[[1, 6], [2, 5], [3, 4]]

**Time Complexity:** O(N^{3})**Auxiliary Space:** O(2^{maxm}), where *maxm *is the maximum element in array B[]

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.