Split a BST into two balanced BSTs based on a value K
Given a Binary Search tree and an integer K, we have to split the tree into two Balanced Binary Search Tree, where BST-1 consists of all the nodes which are less than K and BST-2 consists of all the nodes which are greater than or equal to K.
Note: The arrangement of the nodes may be anything but both BST should be Balanced.
Examples:
Input: 40 / \ 20 50 / \ \ 10 35 60 / / 25 55 K = 35 Output: First BST: 10 20 25 Second BST: 35 40 50 55 60 Explanation: After splitting above BST about given value K = 35 First Balanced Binary Search Tree is 20 / \ 10 25 Second Balanced Binary Search Tree is 50 / \ 35 55 \ \ 40 60 OR 40 / \ 35 55 / \ 50 60 Input: 100 / \ 20 500 / \ 10 30 \ 40 K = 50 Output: First BST: 10 20 30 40 Second BST: 100 500 Explanation: After splitting above BST about given value K = 50 First Balanced Binary Search Tree is 20 / \ 10 30 \ 40 Second Balanced Binary Search Tree is 100 \ 500
Approach:
- First store the inorder traversal of given BST in an array
- Then, split this array about given value K
- Now construct first balanced BST by first splitting part and second BST by second splitting part, using the approach used in this article.
Below is the implementation of the above approach:
C++
// C++ program to split a BST into // two balanced BSTs based on a value K #include <iostream> using namespace std; // Structure of each node of BST struct node { int key; struct node *left, *right; }; // A utility function to // create a new BST node node* newNode( int item) { node* temp = new node(); temp->key = item; temp->left = temp->right = NULL; return temp; } // A utility function to insert a new // node with given key in BST struct node* insert( struct node* node, int key) { // If the tree is empty, return a new node if (node == NULL) return newNode(key); // Otherwise, recur down the tree if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); // return the (unchanged) node pointer return node; } // Function to return the size // of the tree int sizeOfTree(node* root) { if (root == NULL) { return 0; } // Calculate left size recursively int left = sizeOfTree(root->left); // Calculate right size recursively int right = sizeOfTree(root->right); // Return total size recursively return (left + right + 1); } // Function to store inorder // traversal of BST void storeInorder(node* root, int inOrder[], int & index) { // Base condition if (root == NULL) { return ; } // Left recursive call storeInorder(root->left, inOrder, index); // Store elements in inorder array inOrder[index++] = root->key; // Right recursive call storeInorder(root->right, inOrder, index); } // Function to return the splitting // index of the array int getSplittingIndex( int inOrder[], int index, int k) { for ( int i = 0; i < index; i++) { if (inOrder[i] >= k) { return i - 1; } } return index - 1; } // Function to create the Balanced // Binary search tree node* createBST( int inOrder[], int start, int end) { // Base Condition if (start > end) { return NULL; } // Calculate the mid of the array int mid = (start + end) / 2; node* t = newNode(inOrder[mid]); // Recursive call for left child t->left = createBST(inOrder, start, mid - 1); // Recursive call for right child t->right = createBST(inOrder, mid + 1, end); // Return newly created Balanced // Binary Search Tree return t; } // Function to traverse the tree // in inorder fashion void inorderTrav(node* root) { if (root == NULL) return ; inorderTrav(root->left); cout << root->key << " " ; inorderTrav(root->right); } // Function to split the BST // into two Balanced BST void splitBST(node* root, int k) { // Print the original BST cout << "Original BST : " ; if (root != NULL) { inorderTrav(root); } else { cout << "NULL" ; } cout << endl; // Store the size of BST1 int numNode = sizeOfTree(root); // Take auxiliary array for storing // The inorder traversal of BST1 int inOrder[numNode + 1]; int index = 0; // Function call for storing // inorder traversal of BST1 storeInorder(root, inOrder, index); // Function call for getting // splitting index int splitIndex = getSplittingIndex(inOrder, index, k); node* root1 = NULL; node* root2 = NULL; // Creation of first Balanced // Binary Search Tree if (splitIndex != -1) root1 = createBST(inOrder, 0, splitIndex); // Creation of Second Balanced // Binary Search Tree if (splitIndex != (index - 1)) root2 = createBST(inOrder, splitIndex + 1, index - 1); // Print two Balanced BSTs cout << "First BST : " ; if (root1 != NULL) { inorderTrav(root1); } else { cout << "NULL" ; } cout << endl; cout << "Second BST : " ; if (root2 != NULL) { inorderTrav(root2); } else { cout << "NULL" ; } } // Driver code int main() { /* BST 5 / \ 3 7 / \ / \ 2 4 6 8 */ struct node* root = NULL; root = insert(root, 5); insert(root, 3); insert(root, 2); insert(root, 4); insert(root, 7); insert(root, 6); insert(root, 8); int k = 5; // Function to split BST splitBST(root, k); return 0; } |
Java
// Java program to split a BST into // two balanced BSTs based on a value K import java.util.*; class GFG{ // Structure of each node of BST static class node { int key; node left, right; }; static int index; // A utility function to // create a new BST node static node newNode( int item) { node temp = new node(); temp.key = item; temp.left = temp.right = null ; return temp; } // A utility function to insert a new // node with given key in BST static node insert(node node, int key) { // If the tree is empty, return a new node if (node == null ) return newNode(key); // Otherwise, recur down the tree if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); // return the (unchanged) node pointer return node; } // Function to return the size // of the tree static int sizeOfTree(node root) { if (root == null ) { return 0 ; } // Calculate left size recursively int left = sizeOfTree(root.left); // Calculate right size recursively int right = sizeOfTree(root.right); // Return total size recursively return (left + right + 1 ); } // Function to store inorder // traversal of BST static void storeInorder(node root, int inOrder[]) { // Base condition if (root == null ) { return ; } // Left recursive call storeInorder(root.left, inOrder); // Store elements in inorder array inOrder[index++] = root.key; // Right recursive call storeInorder(root.right, inOrder); } // Function to return the splitting // index of the array static int getSplittingIndex( int inOrder[], int k) { for ( int i = 0 ; i < index; i++) { if (inOrder[i] >= k) { return i - 1 ; } } return index - 1 ; } // Function to create the Balanced // Binary search tree static node createBST( int inOrder[], int start, int end) { // Base Condition if (start > end) { return null ; } // Calculate the mid of the array int mid = (start + end) / 2 ; node t = newNode(inOrder[mid]); // Recursive call for left child t.left = createBST(inOrder, start, mid - 1 ); // Recursive call for right child t.right = createBST(inOrder, mid + 1 , end); // Return newly created Balanced // Binary Search Tree return t; } // Function to traverse the tree // in inorder fashion static void inorderTrav(node root) { if (root == null ) return ; inorderTrav(root.left); System.out.print(root.key+ " " ); inorderTrav(root.right); } // Function to split the BST // into two Balanced BST static void splitBST(node root, int k) { // Print the original BST System.out.print( "Original BST : " ); if (root != null ) { inorderTrav(root); } else { System.out.print( "null" ); } System.out.println(); // Store the size of BST1 int numNode = sizeOfTree(root); // Take auxiliary array for storing // The inorder traversal of BST1 int []inOrder = new int [numNode + 1 ]; index = 0 ; // Function call for storing // inorder traversal of BST1 storeInorder(root, inOrder); // Function call for getting // splitting index int splitIndex = getSplittingIndex(inOrder, k); node root1 = null ; node root2 = null ; // Creation of first Balanced // Binary Search Tree if (splitIndex != - 1 ) root1 = createBST(inOrder, 0 , splitIndex); // Creation of Second Balanced // Binary Search Tree if (splitIndex != (index - 1 )) root2 = createBST(inOrder, splitIndex + 1 , index - 1 ); // Print two Balanced BSTs System.out.print( "First BST : " ); if (root1 != null ) { inorderTrav(root1); } else { System.out.print( "null" ); } System.out.println(); System.out.print( "Second BST : " ); if (root2 != null ) { inorderTrav(root2); } else { System.out.print( "null" ); } } // Driver code public static void main(String[] args) { /* BST 5 / \ 3 7 / \ / \ 2 4 6 8 */ node root = null ; root = insert(root, 5 ); insert(root, 3 ); insert(root, 2 ); insert(root, 4 ); insert(root, 7 ); insert(root, 6 ); insert(root, 8 ); int k = 5 ; // Function to split BST splitBST(root, k); } } // This code is contributed by Rajput-Ji |
Python3
# Python 3 program to split a # BST into two balanced BSTs # based on a value K index = 0 # Structure of each node of BST class newNode: def __init__( self , item): # A utility function to # create a new BST node self .key = item self .left = None self .right = None # A utility function to insert # a new node with given key # in BST def insert(node, key): # If the tree is empty, # return a new node if (node = = None ): return newNode(key) # Otherwise, recur down # the tree if (key < node.key): node.left = insert(node.left, key) elif (key > node.key): node.right = insert(node.right, key) # return the (unchanged) # node pointer return node # Function to return the # size of the tree def sizeOfTree(root): if (root = = None ): return 0 # Calculate left size # recursively left = sizeOfTree(root.left) # Calculate right size # recursively right = sizeOfTree(root.right) # Return total size # recursively return (left + right + 1 ) # Function to store inorder # traversal of BST def storeInorder(root, inOrder): global index # Base condition if (root = = None ): return # Left recursive call storeInorder(root.left, inOrder) # Store elements in # inorder array inOrder[index] = root.key index + = 1 # Right recursive call storeInorder(root.right, inOrder) # Function to return the # splitting index of the # array def getSplittingIndex(inOrder, index, k): for i in range (index): if (inOrder[i] > = k): return i - 1 return index - 1 # Function to create the # Balanced Binary search # tree def createBST(inOrder, start, end): # Base Condition if (start > end): return None # Calculate the mid of # the array mid = (start + end) / / 2 t = newNode(inOrder[mid]) # Recursive call for # left child t.left = createBST(inOrder, start, mid - 1 ) # Recursive call for # right child t.right = createBST(inOrder, mid + 1 , end) # Return newly created # Balanced Binary Search # Tree return t # Function to traverse # the tree in inorder # fashion def inorderTrav(root): if (root = = None ): return inorderTrav(root.left) print (root.key, end = " " ) inorderTrav(root.right) # Function to split the BST # into two Balanced BST def splitBST(root, k): global index # Print the original BST print ( "Original BST : " ) if (root ! = None ): inorderTrav(root) print ( "\n" , end = "") else : print ( "NULL" ) # Store the size of BST1 numNode = sizeOfTree(root) # Take auxiliary array for # storing The inorder traversal # of BST1 inOrder = [ 0 for i in range (numNode + 1 )] index = 0 # Function call for storing # inorder traversal of BST1 storeInorder(root, inOrder) # Function call for getting # splitting index splitIndex = getSplittingIndex(inOrder, index, k) root1 = None root2 = None # Creation of first Balanced # Binary Search Tree if (splitIndex ! = - 1 ): root1 = createBST(inOrder, 0 , splitIndex) # Creation of Second Balanced # Binary Search Tree if (splitIndex ! = (index - 1 )): root2 = createBST(inOrder, splitIndex + 1 , index - 1 ) # Print two Balanced BSTs print ( "First BST : " ) if (root1 ! = None ): inorderTrav(root1) print ( "\n" , end = "") else : print ( "NULL" ) print ( "Second BST : " ) if (root2 ! = None ): inorderTrav(root2) print ( "\n" , end = "") else : print ( "NULL" ) # Driver code if __name__ = = '__main__' : '''/* BST 5 / / 3 7 / / / / 2 4 6 8 */''' root = None root = insert(root, 5 ) insert(root, 3 ) insert(root, 2 ) insert(root, 4 ) insert(root, 7 ) insert(root, 6 ) insert(root, 8 ) k = 5 # Function to split BST splitBST(root, k) # This code is contributed by Chitranayal |
C#
// C# program to split a BST into // two balanced BSTs based on a value K using System; public class GFG{ // Structure of each node of BST public class node { public int key; public node left, right; }; static int index; // A utility function to // create a new BST node static node newNode( int item) { node temp = new node(); temp.key = item; temp.left = temp.right = null ; return temp; } // A utility function to insert a new // node with given key in BST static node insert(node node, int key) { // If the tree is empty, return a new node if (node == null ) return newNode(key); // Otherwise, recur down the tree if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); // return the (unchanged) node pointer return node; } // Function to return the size // of the tree static int sizeOfTree(node root) { if (root == null ) { return 0; } // Calculate left size recursively int left = sizeOfTree(root.left); // Calculate right size recursively int right = sizeOfTree(root.right); // Return total size recursively return (left + right + 1); } // Function to store inorder // traversal of BST static void storeInorder(node root, int []inOrder) { // Base condition if (root == null ) { return ; } // Left recursive call storeInorder(root.left, inOrder); // Store elements in inorder array inOrder[index++] = root.key; // Right recursive call storeInorder(root.right, inOrder); } // Function to return the splitting // index of the array static int getSplittingIndex( int []inOrder, int k) { for ( int i = 0; i < index; i++) { if (inOrder[i] >= k) { return i - 1; } } return index - 1; } // Function to create the Balanced // Binary search tree static node createBST( int []inOrder, int start, int end) { // Base Condition if (start > end) { return null ; } // Calculate the mid of the array int mid = (start + end) / 2; node t = newNode(inOrder[mid]); // Recursive call for left child t.left = createBST(inOrder, start, mid - 1); // Recursive call for right child t.right = createBST(inOrder, mid + 1, end); // Return newly created Balanced // Binary Search Tree return t; } // Function to traverse the tree // in inorder fashion static void inorderTrav(node root) { if (root == null ) return ; inorderTrav(root.left); Console.Write(root.key+ " " ); inorderTrav(root.right); } // Function to split the BST // into two Balanced BST static void splitBST(node root, int k) { // Print the original BST Console.Write( "Original BST : " ); if (root != null ) { inorderTrav(root); } else { Console.Write( "null" ); } Console.WriteLine(); // Store the size of BST1 int numNode = sizeOfTree(root); // Take auxiliary array for storing // The inorder traversal of BST1 int []inOrder = new int [numNode + 1]; index = 0; // Function call for storing // inorder traversal of BST1 storeInorder(root, inOrder); // Function call for getting // splitting index int splitIndex = getSplittingIndex(inOrder, k); node root1 = null ; node root2 = null ; // Creation of first Balanced // Binary Search Tree if (splitIndex != -1) root1 = createBST(inOrder, 0, splitIndex); // Creation of Second Balanced // Binary Search Tree if (splitIndex != (index - 1)) root2 = createBST(inOrder, splitIndex + 1, index - 1); // Print two Balanced BSTs Console.Write( "First BST : " ); if (root1 != null ) { inorderTrav(root1); } else { Console.Write( "null" ); } Console.WriteLine(); Console.Write( "Second BST : " ); if (root2 != null ) { inorderTrav(root2); } else { Console.Write( "null" ); } } // Driver code public static void Main(String[] args) { /* BST 5 / \ 3 7 / \ / \ 2 4 6 8 */ node root = null ; root = insert(root, 5); insert(root, 3); insert(root, 2); insert(root, 4); insert(root, 7); insert(root, 6); insert(root, 8); int k = 5; // Function to split BST splitBST(root, k); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // javascript program to split a BST into // two balanced BSTs based on a value K // Structure of each node of BST class node { constructor() { this .key = 0; this .left = this .right = null ; } } var index = 0; // A utility function to // create a new BST node function newNode(item) { var temp = new node(); temp.key = item; temp.left = temp.right = null ; return temp; } // A utility function to insert a new // node with given key in BST function insert( node , key) { // If the tree is empty, return a new node if (node == null ) return newNode(key); // Otherwise, recur down the tree if (key < node.key) node.left = insert(node.left, key); else if (key > node.key) node.right = insert(node.right, key); // return the (unchanged) node pointer return node; } // Function to return the size // of the tree function sizeOfTree( root) { if (root == null ) { return 0; } // Calculate left size recursively var left = sizeOfTree(root.left); // Calculate right size recursively var right = sizeOfTree(root.right); // Return total size recursively return (left + right + 1); } // Function to store inorder // traversal of BST function storeInorder( root , inOrder) { // Base condition if (root == null ) { return ; } // Left recursive call storeInorder(root.left, inOrder); // Store elements in inorder array inOrder[index++] = root.key; // Right recursive call storeInorder(root.right, inOrder); } // Function to return the splitting // index of the array function getSplittingIndex(inOrder , k) { for (i = 0; i < index; i++) { if (inOrder[i] >= k) { return i - 1; } } return index - 1; } // Function to create the Balanced // Binary search tree function createBST(inOrder , start , end) { // Base Condition if (start > end) { return null ; } // Calculate the mid of the array var mid = parseInt((start + end) / 2); var t = newNode(inOrder[mid]); // Recursive call for left child t.left = createBST(inOrder, start, mid - 1); // Recursive call for right child t.right = createBST(inOrder, mid + 1, end); // Return newly created Balanced // Binary Search Tree return t; } // Function to traverse the tree // in inorder fashion function inorderTrav( root) { if (root == null ) return ; inorderTrav(root.left); document.write(root.key + " " ); inorderTrav(root.right); } // Function to split the BST // into two Balanced BST function splitBST( root , k) { // Print the original BST document.write( "Original BST : " ); if (root != null ) { inorderTrav(root); } else { document.write( "null" ); } document.write(); // Store the size of BST1 var numNode = sizeOfTree(root); // Take auxiliary array for storing // The inorder traversal of BST1 var inOrder = Array(numNode + 1).fill(0); index = 0; // Function call for storing // inorder traversal of BST1 storeInorder(root, inOrder); // Function call for getting // splitting index var splitIndex = getSplittingIndex(inOrder, k); var root1 = null ; var root2 = null ; // Creation of first Balanced // Binary Search Tree if (splitIndex != -1) root1 = createBST(inOrder, 0, splitIndex); // Creation of Second Balanced // Binary Search Tree if (splitIndex != (index - 1)) root2 = createBST(inOrder, splitIndex + 1, index - 1); // Print two Balanced BSTs document.write( "<br/>First BST : " ); if (root1 != null ) { inorderTrav(root1); } else { document.write( "null" ); } document.write(); document.write( "<br/>Second BST : " ); if (root2 != null ) { inorderTrav(root2); } else { document.write( "null" ); } } // Driver code /* BST 5 / \ 3 7 / \ / \ 2 4 6 8 */ var root = null ; root = insert(root, 5); insert(root, 3); insert(root, 2); insert(root, 4); insert(root, 7); insert(root, 6); insert(root, 8); var k = 5; // Function to split BST splitBST(root, k); // This code contributed by Rajput-Ji </script> |
Original BST : 2 3 4 5 6 7 8 First BST : 2 3 4 Second BST : 5 6 7 8
Time Complexity: where n is the number of nodes in the BST. This is because the function storeInorder() traverses through all the nodes of the BST inorder and the function createBST() traverses through all the nodes of the balanced BST that it creates.
Auxiliary Space: where n is the number of nodes in the BST. This is because an array of size n is created to store the inorder traversal of the BST. Additionally, a new balanced BST is created from the inorder traversal, which also requires space.
Please Login to comment...