# Splay Tree | Set 1 (Search)

• Difficulty Level : Medium
• Last Updated : 19 Jul, 2021

The worst case time complexity of Binary Search Tree (BST) operations like search, delete, insert is O(n). The worst case occurs when the tree is skewed. We can get the worst case time complexity as O(Logn) with AVL and Red-Black Trees.
Can we do better than AVL or Red-Black trees in practical situations?
Like AVL and Red-Black Trees, Splay tree is also self-balancing BST. The main idea of splay tree is to bring the recently accessed item to root of the tree, this makes the recently searched item to be accessible in O(1) time if accessed again. The idea is to use locality of reference (In a typical application, 80% of the access are to 20% of the items). Imagine a situation where we have millions or billions of keys and only few of them are accessed frequently, which is very likely in many practical applications.
All splay tree operations run in O(log n) time on average, where n is the number of entries in the tree. Any single operation can take Theta(n) time in the worst case.
Search Operation
The search operation in Splay tree does the standard BST search, in addition to search, it also splays (move a node to the root). If the search is successful, then the node that is found is splayed and becomes the new root. Else the last node accessed prior to reaching the NULL is splayed and becomes the new root.
There are following cases for the node being accessed.
1) Node is root We simply return the root, don’t do anything else as the accessed node is already root.
2) Zig: Node is child of root (the node has no grandparent). Node is either a left child of root (we do a right rotation) or node is a right child of its parent (we do a left rotation).
T1, T2 and T3 are subtrees of the tree rooted with y (on left side) or x (on right side)

y                                     x
/ \     Zig (Right Rotation)          /  \
x   T3   â€“ - â€“ - â€“ - â€“ - - ->         T1   y
/ \       < - - - - - - - - -              / \
T1  T2     Zag (Left Rotation)            T2   T3

3) Node has both parent and grandparent. There can be following subcases.
……..3.a) Zig-Zig and Zag-Zag Node is left child of parent and parent is also left child of grand parent (Two right rotations) OR node is right child of its parent and parent is also right child of grand parent (Two Left Rotations).

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Zig-Zig (Left Left Case):
G                        P                           X
/ \                     /   \                        / \
P  T4   rightRotate(G)  X     G     rightRotate(P)  T1   P
/ \      ============>  / \   / \    ============>       / \
X  T3                   T1 T2 T3 T4                      T2  G
/ \                                                          / \
T1 T2                                                        T3  T4

Zag-Zag (Right Right Case):
G                          P                           X
/  \                      /   \                        / \
T1   P     leftRotate(G)  G     X     leftRotate(P)    P   T4
/ \    ============> / \   / \    ============>   / \
T2   X               T1 T2 T3 T4                  G   T3
/ \                                          / \
T3 T4                                        T1  T2

……..3.b) Zig-Zag and Zag-Zig Node is right child of parent and parent is right left of grand parent (Left Rotation followed by right rotation) OR node is left child of its parent and parent is right child of grand parent (Right Rotation followed by left rotation).

Zag-Zig (Left Right Case):
G                        G                            X
/ \                     /   \                        /   \
P   T4  leftRotate(P)   X     T4    rightRotate(G)   P     G
/  \      ============>  / \          ============>   / \   /  \
T1   X                   P  T3                       T1  T2 T3  T4
/ \                 / \
T2  T3              T1   T2

Zig-Zag (Right Left Case):
G                          G                           X
/  \                      /  \                        /   \
T1   P    rightRotate(P)  T1   X     leftRotate(G)    G     P
/ \   =============>      / \    ============>   / \   / \
X  T4                    T2   P                 T1  T2 T3  T4
/ \                           / \
T2  T3                        T3  T4

Example:

100                      100                       [20]
/  \                    /   \                        \
50   200                50    200                      50
/          search(20)    /          search(20)         /  \
40          ======>     [20]         ========>         30   100
/            1. Zig-Zig    \          2. Zig-Zig         \     \
30               at 40       30            at 100         40    200
/                               \
[20]                              40

The important thing to note is, the search or splay operation not only brings the searched key to root, but also balances the BST. For example in above case, height of BST is reduced by 1.
Implementation:

## C++

 #include using namespace std; // An AVL tree nodeclass node{    public:    int key;    node *left, *right;}; /* Helper function that allocatesa new node with the given key and    NULL left and right pointers. */node* newNode(int key){    node* Node = new node();    Node->key = key;    Node->left = Node->right = NULL;    return (Node);} // A utility function to right// rotate subtree rooted with y// See the diagram given above.node *rightRotate(node *x){    node *y = x->left;    x->left = y->right;    y->right = x;    return y;} // A utility function to left// rotate subtree rooted with x// See the diagram given above.node *leftRotate(node *x){    node *y = x->right;    x->right = y->left;    y->left = x;    return y;} // This function brings the key at// root if key is present in tree.// If key is not present, then it// brings the last accessed item at// root. This function modifies the// tree and returns the new rootnode *splay(node *root, int key){    // Base cases: root is NULL or    // key is present at root    if (root == NULL || root->key == key)        return root;     // Key lies in left subtree    if (root->key > key)    {        // Key is not in tree, we are done        if (root->left == NULL) return root;         // Zig-Zig (Left Left)        if (root->left->key > key)        {            // First recursively bring the            // key as root of left-left            root->left->left = splay(root->left->left, key);             // Do first rotation for root,            // second rotation is done after else            root = rightRotate(root);        }        else if (root->left->key < key) // Zig-Zag (Left Right)        {            // First recursively bring            // the key as root of left-right            root->left->right = splay(root->left->right, key);             // Do first rotation for root->left            if (root->left->right != NULL)                root->left = leftRotate(root->left);        }         // Do second rotation for root        return (root->left == NULL)? root: rightRotate(root);    }    else // Key lies in right subtree    {        // Key is not in tree, we are done        if (root->right == NULL) return root;         // Zag-Zig (Right Left)        if (root->right->key > key)        {            // Bring the key as root of right-left            root->right->left = splay(root->right->left, key);             // Do first rotation for root->right            if (root->right->left != NULL)                root->right = rightRotate(root->right);        }        else if (root->right->key < key)// Zag-Zag (Right Right)        {            // Bring the key as root of            // right-right and do first rotation            root->right->right = splay(root->right->right, key);            root = leftRotate(root);        }         // Do second rotation for root        return (root->right == NULL)? root: leftRotate(root);    }} // The search function for Splay tree.// Note that this function returns the// new root of Splay Tree. If key is// present in tree then, it is moved to root.node *search(node *root, int key){    return splay(root, key);} // A utility function to print// preorder traversal of the tree.// The function also prints height of every nodevoid preOrder(node *root){    if (root != NULL)    {        cout<key<<" ";        preOrder(root->left);        preOrder(root->right);    }} /* Driver code*/int main(){    node *root = newNode(100);    root->left = newNode(50);    root->right = newNode(200);    root->left->left = newNode(40);    root->left->left->left = newNode(30);    root->left->left->left->left = newNode(20);     root = search(root, 20);    cout << "Preorder traversal of the modified Splay tree is \n";    preOrder(root);    return 0;} // This code is contributed by rathbhupendra

## C

 // The code is adopted from http://goo.gl/SDH9hH#include#include // An AVL tree nodestruct node{    int key;    struct node *left, *right;}; /* Helper function that allocates a new node with the given key and    NULL left and right pointers. */struct node* newNode(int key){    struct node* node = (struct node*)malloc(sizeof(struct node));    node->key   = key;    node->left  = node->right  = NULL;    return (node);} // A utility function to right rotate subtree rooted with y// See the diagram given above.struct node *rightRotate(struct node *x){    struct node *y = x->left;    x->left = y->right;    y->right = x;    return y;} // A utility function to left rotate subtree rooted with x// See the diagram given above.struct node *leftRotate(struct node *x){    struct node *y = x->right;    x->right = y->left;    y->left = x;    return y;} // This function brings the key at root if key is present in tree.// If key is not present, then it brings the last accessed item at// root.  This function modifies the tree and returns the new rootstruct node *splay(struct node *root, int key){    // Base cases: root is NULL or key is present at root    if (root == NULL || root->key == key)        return root;     // Key lies in left subtree    if (root->key > key)    {        // Key is not in tree, we are done        if (root->left == NULL) return root;         // Zig-Zig (Left Left)        if (root->left->key > key)        {            // First recursively bring the key as root of left-left            root->left->left = splay(root->left->left, key);             // Do first rotation for root, second rotation is done after else            root = rightRotate(root);        }        else if (root->left->key < key) // Zig-Zag (Left Right)        {            // First recursively bring the key as root of left-right            root->left->right = splay(root->left->right, key);             // Do first rotation for root->left            if (root->left->right != NULL)                root->left = leftRotate(root->left);        }         // Do second rotation for root        return (root->left == NULL)? root: rightRotate(root);    }    else // Key lies in right subtree    {        // Key is not in tree, we are done        if (root->right == NULL) return root;         // Zag-Zig (Right Left)        if (root->right->key > key)        {            // Bring the key as root of right-left            root->right->left = splay(root->right->left, key);             // Do first rotation for root->right            if (root->right->left != NULL)                root->right = rightRotate(root->right);        }        else if (root->right->key < key)// Zag-Zag (Right Right)        {            // Bring the key as root of right-right and do first rotation            root->right->right = splay(root->right->right, key);            root = leftRotate(root);        }         // Do second rotation for root        return (root->right == NULL)? root: leftRotate(root);    }} // The search function for Splay tree.  Note that this function// returns the new root of Splay Tree.  If key is present in tree// then, it is moved to root.struct node *search(struct node *root, int key){    return splay(root, key);} // A utility function to print preorder traversal of the tree.// The function also prints height of every nodevoid preOrder(struct node *root){    if (root != NULL)    {        printf("%d ", root->key);        preOrder(root->left);        preOrder(root->right);    }} /* Driver program to test above function*/int main(){    struct node *root = newNode(100);    root->left = newNode(50);    root->right = newNode(200);    root->left->left = newNode(40);    root->left->left->left = newNode(30);    root->left->left->left->left = newNode(20);     root = search(root, 20);    printf("Preorder traversal of the modified Splay tree is \n");    preOrder(root);    return 0;}

## Java

 // Java implementation for above approachclass GFG{ // An AVL tree nodestatic class node{     int key;    node left, right;}; /* Helper function that allocatesa new node with the given key and    null left and right pointers. */static node newNode(int key){    node Node = new node();    Node.key = key;    Node.left = Node.right = null;    return (Node);} // A utility function to right// rotate subtree rooted with y// See the diagram given above.static node rightRotate(node x){    node y = x.left;    x.left = y.right;    y.right = x;    return y;} // A utility function to left// rotate subtree rooted with x// See the diagram given above.static node leftRotate(node x){    node y = x.right;    x.right = y.left;    y.left = x;    return y;} // This function brings the key at// root if key is present in tree.// If key is not present, then it// brings the last accessed item at// root. This function modifies the// tree and returns the new rootstatic node splay(node root, int key){    // Base cases: root is null or    // key is present at root    if (root == null || root.key == key)        return root;     // Key lies in left subtree    if (root.key > key)    {        // Key is not in tree, we are done        if (root.left == null) return root;         // Zig-Zig (Left Left)        if (root.left.key > key)        {            // First recursively bring the            // key as root of left-left            root.left.left = splay(root.left.left, key);             // Do first rotation for root,            // second rotation is done after else            root = rightRotate(root);        }        else if (root.left.key < key) // Zig-Zag (Left Right)        {            // First recursively bring            // the key as root of left-right            root.left.right = splay(root.left.right, key);             // Do first rotation for root.left            if (root.left.right != null)                root.left = leftRotate(root.left);        }         // Do second rotation for root        return (root.left == null) ?                              root : rightRotate(root);    }    else // Key lies in right subtree    {        // Key is not in tree, we are done        if (root.right == null) return root;         // Zag-Zig (Right Left)        if (root.right.key > key)        {            // Bring the key as root of right-left            root.right.left = splay(root.right.left, key);             // Do first rotation for root.right            if (root.right.left != null)                root.right = rightRotate(root.right);        }        else if (root.right.key < key)// Zag-Zag (Right Right)        {            // Bring the key as root of            // right-right and do first rotation            root.right.right = splay(root.right.right, key);            root = leftRotate(root);        }         // Do second rotation for root        return (root.right == null) ?                               root : leftRotate(root);    }} // The search function for Splay tree.// Note that this function returns the// new root of Splay Tree. If key is// present in tree then, it is moved to root.static node search(node root, int key){    return splay(root, key);} // A utility function to print// preorder traversal of the tree.// The function also prints height of every nodestatic void preOrder(node root){    if (root != null)    {        System.out.print(root.key + " ");        preOrder(root.left);        preOrder(root.right);    }} // Driver codepublic static void main(String[] args){    node root = newNode(100);    root.left = newNode(50);    root.right = newNode(200);    root.left.left = newNode(40);    root.left.left.left = newNode(30);    root.left.left.left.left = newNode(20);     root = search(root, 20);    System.out.print("Preorder traversal of the" +                      " modified Splay tree is \n");    preOrder(root);}} // This code is contributed by 29AjayKumar

## C#

 // C# implementation for above approachusing System; class GFG{ // An AVL tree nodepublic class node{     public int key;    public node left, right;}; /* Helper function that allocatesa new node with the given key andnull left and right pointers. */static node newNode(int key){    node Node = new node();    Node.key = key;    Node.left = Node.right = null;    return (Node);} // A utility function to right// rotate subtree rooted with y// See the diagram given above.static node rightRotate(node x){    node y = x.left;    x.left = y.right;    y.right = x;    return y;} // A utility function to left// rotate subtree rooted with x// See the diagram given above.static node leftRotate(node x){    node y = x.right;    x.right = y.left;    y.left = x;    return y;} // This function brings the key at// root if key is present in tree.// If key is not present, then it// brings the last accessed item at// root. This function modifies the// tree and returns the new rootstatic node splay(node root, int key){    // Base cases: root is null or    // key is present at root    if (root == null || root.key == key)        return root;     // Key lies in left subtree    if (root.key > key)    {        // Key is not in tree, we are done        if (root.left == null) return root;         // Zig-Zig (Left Left)        if (root.left.key > key)        {            // First recursively bring the            // key as root of left-left            root.left.left = splay(root.left.left, key);             // Do first rotation for root,            // second rotation is done after else            root = rightRotate(root);        }        else if (root.left.key < key) // Zig-Zag (Left Right)        {            // First recursively bring            // the key as root of left-right            root.left.right = splay(root.left.right, key);             // Do first rotation for root.left            if (root.left.right != null)                root.left = leftRotate(root.left);        }         // Do second rotation for root        return (root.left == null) ?                               root : rightRotate(root);    }    else // Key lies in right subtree    {        // Key is not in tree, we are done        if (root.right == null) return root;         // Zag-Zig (Right Left)        if (root.right.key > key)        {            // Bring the key as root of right-left            root.right.left = splay(root.right.left, key);             // Do first rotation for root.right            if (root.right.left != null)                root.right = rightRotate(root.right);        }        else if (root.right.key < key)// Zag-Zag (Right Right)        {            // Bring the key as root of            // right-right and do first rotation            root.right.right = splay(root.right.right, key);            root = leftRotate(root);        }         // Do second rotation for root        return (root.right == null) ?                               root : leftRotate(root);    }} // The search function for Splay tree.// Note that this function returns the// new root of Splay Tree. If key is// present in tree then, it is moved to root.static node search(node root, int key){    return splay(root, key);} // A utility function to print// preorder traversal of the tree.// The function also prints height of every nodestatic void preOrder(node root){    if (root != null)    {        Console.Write(root.key + " ");        preOrder(root.left);        preOrder(root.right);    }} // Driver codepublic static void Main(String[] args){    node root = newNode(100);    root.left = newNode(50);    root.right = newNode(200);    root.left.left = newNode(40);    root.left.left.left = newNode(30);    root.left.left.left.left = newNode(20);     root = search(root, 20);    Console.Write("Preorder traversal of the" +                  " modified Splay tree is \n");    preOrder(root);}} // This code is contributed by 29AjayKumar

## Javascript



Output:

Preorder traversal of the modified Splay tree is
20 50 30 40 100 200

Summary
1) Splay trees have excellent locality properties. Frequently accessed items are easy to find. Infrequent items are out of way.
2) All splay tree operations take O(Logn) time on average. Splay trees can be rigorously shown to run in O(log n) average time per operation, over any sequence of operations (assuming we start from an empty tree)
3) Splay trees are simpler compared to AVL and Red-Black Trees as no extra field is required in every tree node.
4) Unlike AVL tree, a splay tree can change even with read-only operations like search.
Applications of Splay Trees
Splay trees have become the most widely used basic data structure invented in the last 30 years, because they’re the fastest type of balanced search tree for many applications.
Splay trees are used in Windows NT (in the virtual memory, networking, and file system code), the gcc compiler and GNU C++ library, the sed string editor, Fore Systems network routers, the most popular implementation of Unix malloc, Linux loadable kernel modules, and in much other software (Source: http://www.cs.berkeley.edu/~jrs/61b/lec/36)
See Splay Tree | Set 2 (Insert) for splay tree insertion.
References:
http://www.cs.berkeley.edu/~jrs/61b/lec/36
http://www.cs.cornell.edu/courses/cs3110/2009fa/recitations/rec-splay.html
http://courses.cs.washington.edu/courses/cse326/01au/lectures/SplayTrees.ppt