Special prime numbers

Given two numbers n and k, find whether there exist at least k Special prime numbers or not from 2 to n inclusively.
A prime number is said to be Special prime number if it can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.
Note:- Two prime numbers are called neighboring if there are no other prime numbers between them.
Examples:

Input : n = 27, k = 2
Output : YES
In this sample the answer is YES 
since at least two numbers are 
Special 13(5 + 7 + 1) and
19(7 + 11 + 1).

Input : n = 45, k = 7
Output : NO
In this example, the Special 
prime numbers are 13(5 + 7 + 1), 
19(7 + 11 + 1), 31(13 + 17 + 1),
37(17 + 19 + 1), 43(19 + 23 + 1).
As the no. of Special prime 
numbers from 2 to 45 is less than
k, the output is NO.

To solve this problem we need to find prime numbers in range [2..n]. So we us Sieve of Eratosthenes to generate all the prime numbers from 2 to n. Then, Take every pair of neighboring prime numbers and check if their sum increased by 1 is a prime number too. Count the number of these pairs, compare it to K and output the result.
Below is the implementation of the above approach:-

C++



filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to check whether there
// exist at least k or not in range [2..n]
#include <bits/stdc++.h>
using namespace std;
  
vector<int> primes;
  
// Generating all the prime numbers
// from 2 to n.
void SieveofEratosthenes(int n)
{
    bool visited[n];
    for (int i = 2; i <= n + 1; i++)
        if (!visited[i]) {
            for (int j = i * i; j <= n + 1; j += i)
                visited[j] = true;
            primes.push_back(i);
        }
}
  
bool specialPrimeNumbers(int n, int k)
{
    SieveofEratosthenes(n);
    int count = 0;
    for (int i = 0; i < primes.size(); i++) {
        for (int j = 0; j < i - 1; j++) {
  
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if (primes[j] + primes[j + 1] + 1
                == primes[i]) {
                count++;
                break;
            }
        }
  
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if (count == k)
            return true;
    }
    return false;
}
  
// Driver function
int main()
{
    int n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        cout << "YES" << endl;
    else
        cout << "NO" << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to check whether there
// exist at least k or not in range [2..n]
import java.util.*; 
class GFG{
static ArrayList<Integer> primes = new ArrayList<Integer>();
// Generating all the prime numbers
// from 2 to n.
static void SieveofEratosthenes(int n)
{
    boolean[] visited=new boolean[n*n+2];
    for (int i = 2; i <= n + 1; i++)
        if (!visited[i]) {
            for (int j = i * i; j <= n + 1; j += i)
                visited[j] = true;
            primes.add(i);
        }
}
  
static boolean specialPrimeNumbers(int n, int k)
{
    SieveofEratosthenes(n);
    int count = 0;
    for (int i = 0; i < primes.size(); i++) {
        for (int j = 0; j < i - 1; j++) {
  
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if (primes.get(j) + primes.get(j + 1) + 1
                == primes.get(i)) {
                count++;
                break;
            }
        }
  
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if (count == k)
            return true;
    }
    return false;
}
  
// Driver function
public static void main(String[] args)
{
    int n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        System.out.println("YES");
    else
        System.out.println("NO");
}
}
// This code is contributed by mits

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to check whether there
# exist at least k or not in range [2..n]
primes = [];
  
# Generating all the prime numbers
# from 2 to n.
def SieveofEratosthenes(n):
  
    visited = [False] * (n + 2);
    for i in range(2, n + 2):
        if (visited[i] == False): 
            for j in range(i * i, n + 2, i):
                visited[j] = True;
            primes.append(i);
  
def specialPrimeNumbers(n, k):
  
    SieveofEratosthenes(n);
    count = 0;
    for i in range(len(primes)):
        for j in range(i - 1): 
  
            # If a prime number is Special 
            # prime number, then we increments 
            # the value of k.
            if (primes[j] + 
                primes[j + 1] + 1 == primes[i]): 
                count += 1;
                break;
  
        # If at least k Special prime numbers
        # are present, then we return 1.
        # else we return 0 from outside of
        # the outer loop.
        if (count == k):
            return True;
  
    return False;
  
# Driver Code
n = 27;
k = 2;
if (specialPrimeNumbers(n, k)):
    print("YES");
else:
    print("NO");
  
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to check whether there
// exist at least k or not in range [2..n]
using System;
using System.Collections; 
  
class GFG{
static ArrayList primes = new ArrayList();
// Generating all the prime numbers
// from 2 to n.
static void SieveofEratosthenes(int n)
{
    bool[] visited=new bool[n*n+2];
    for (int i = 2; i <= n + 1; i++)
        if (!visited[i]) {
            for (int j = i * i; j <= n + 1; j += i)
                visited[j] = true;
            primes.Add(i);
        }
}
  
static bool specialPrimeNumbers(int n, int k)
{
    SieveofEratosthenes(n);
    int count = 0;
    for (int i = 0; i < primes.Count; i++) {
        for (int j = 0; j < i - 1; j++) {
  
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if ((int)primes[j] + (int)primes[j + 1] + 1
                == (int)primes[i]) {
                count++;
                break;
            }
        }
  
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if (count == k)
            return true;
    }
    return false;
}
  
// Driver function
public static void Main()
{
    int n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        Console.WriteLine("YES");
    else
        Console.WriteLine("NO");
}
}
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to check whether there
// exist at least k or not in range [2..n]
$primes = array();
  
// Generating all the prime numbers
// from 2 to n.
function SieveofEratosthenes($n)
{
    global $primes;
    $visited = array_fill(0, $n, false);
    for ($i = 2; $i <= $n + 1; $i++)
        if (!$visited[$i]) 
        {
            for ($j = $i * $i
                 $j <= $n + 1; $j += $i)
                $visited[$j] = true;
            array_push($primes, $i);
        }
}
  
function specialPrimeNumbers($n, $k)
{
    global $primes;
    SieveofEratosthenes($n);
    $count = 0;
    for ($i = 0; $i < count($primes); $i++) 
    {
        for ($j = 0; $j < $i - 1; $j++) 
        {
  
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if ($primes[$j] + 
                $primes[$j + 1] + 1 == $primes[$i]) 
            {
                $count++;
                break;
            }
        }
  
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if ($count == $k)
            return true;
    }
    return false;
}
  
// Driver Code
$n = 27;
$k = 2;
if (specialPrimeNumbers($n, $k))
    echo "YES\n";
else
    echo "NO\n";
  
// This code is contributed by mits
?>

chevron_right


Output:-

 YES


My Personal Notes arrow_drop_up

Intern at GeeksforGeeks

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Mithun Kumar