Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Special prime numbers

  • Difficulty Level : Medium
  • Last Updated : 01 Apr, 2021

Given two numbers n and k, find whether there exist at least k Special prime numbers or not from 2 to n inclusively. 
A prime number is said to be Special prime number if it can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1. 
Note:- Two prime numbers are called neighboring if there are no other prime numbers between them. 
Examples: 
 

Input : n = 27, k = 2
Output : YES
In this sample the answer is YES 
since at least two numbers are 
Special 13(5 + 7 + 1) and
19(7 + 11 + 1).

Input : n = 45, k = 7
Output : NO
In this example, the Special 
prime numbers are 13(5 + 7 + 1), 
19(7 + 11 + 1), 31(13 + 17 + 1),
37(17 + 19 + 1), 43(19 + 23 + 1).
As the no. of Special prime 
numbers from 2 to 45 is less than
k, the output is NO.

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

To solve this problem we need to find prime numbers in range [2..n]. So we us Sieve of Eratosthenes to generate all the prime numbers from 2 to n. Then, Take every pair of neighboring prime numbers and check if their sum increased by 1 is a prime number too. Count the number of these pairs, compare it to K and output the result. 
Below is the implementation of the above approach:- 
 

C++




// CPP program to check whether there
// exist at least k or not in range [2..n]
#include <bits/stdc++.h>
using namespace std;
 
vector<int> primes;
 
// Generating all the prime numbers
// from 2 to n.
void SieveofEratosthenes(int n)
{
    bool visited[n];
    for (int i = 2; i <= n + 1; i++)
        if (!visited[i]) {
            for (int j = i * i; j <= n + 1; j += i)
                visited[j] = true;
            primes.push_back(i);
        }
}
 
bool specialPrimeNumbers(int n, int k)
{
    SieveofEratosthenes(n);
    int count = 0;
    for (int i = 0; i < primes.size(); i++) {
        for (int j = 0; j < i - 1; j++) {
 
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if (primes[j] + primes[j + 1] + 1
                == primes[i]) {
                count++;
                break;
            }
        }
 
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if (count == k)
            return true;
    }
    return false;
}
 
// Driver function
int main()
{
    int n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        cout << "YES" << endl;
    else
        cout << "NO" << endl;
    return 0;
}

Java




// Java program to check whether there
// exist at least k or not in range [2..n]
import java.util.*;
class GFG{
static ArrayList<Integer> primes = new ArrayList<Integer>();
// Generating all the prime numbers
// from 2 to n.
static void SieveofEratosthenes(int n)
{
    boolean[] visited=new boolean[n*n+2];
    for (int i = 2; i <= n + 1; i++)
        if (!visited[i]) {
            for (int j = i * i; j <= n + 1; j += i)
                visited[j] = true;
            primes.add(i);
        }
}
 
static boolean specialPrimeNumbers(int n, int k)
{
    SieveofEratosthenes(n);
    int count = 0;
    for (int i = 0; i < primes.size(); i++) {
        for (int j = 0; j < i - 1; j++) {
 
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if (primes.get(j) + primes.get(j + 1) + 1
                == primes.get(i)) {
                count++;
                break;
            }
        }
 
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if (count == k)
            return true;
    }
    return false;
}
 
// Driver function
public static void main(String[] args)
{
    int n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        System.out.println("YES");
    else
        System.out.println("NO");
}
}
// This code is contributed by mits

Python3




# Python3 program to check whether there
# exist at least k or not in range [2..n]
primes = [];
 
# Generating all the prime numbers
# from 2 to n.
def SieveofEratosthenes(n):
 
    visited = [False] * (n + 2);
    for i in range(2, n + 2):
        if (visited[i] == False):
            for j in range(i * i, n + 2, i):
                visited[j] = True;
            primes.append(i);
 
def specialPrimeNumbers(n, k):
 
    SieveofEratosthenes(n);
    count = 0;
    for i in range(len(primes)):
        for j in range(i - 1):
 
            # If a prime number is Special
            # prime number, then we increments
            # the value of k.
            if (primes[j] +
                primes[j + 1] + 1 == primes[i]):
                count += 1;
                break;
 
        # If at least k Special prime numbers
        # are present, then we return 1.
        # else we return 0 from outside of
        # the outer loop.
        if (count == k):
            return True;
 
    return False;
 
# Driver Code
n = 27;
k = 2;
if (specialPrimeNumbers(n, k)):
    print("YES");
else:
    print("NO");
 
# This code is contributed by mits

C#




// C# program to check whether there
// exist at least k or not in range [2..n]
using System;
using System.Collections;
 
class GFG{
static ArrayList primes = new ArrayList();
// Generating all the prime numbers
// from 2 to n.
static void SieveofEratosthenes(int n)
{
    bool[] visited=new bool[n*n+2];
    for (int i = 2; i <= n + 1; i++)
        if (!visited[i]) {
            for (int j = i * i; j <= n + 1; j += i)
                visited[j] = true;
            primes.Add(i);
        }
}
 
static bool specialPrimeNumbers(int n, int k)
{
    SieveofEratosthenes(n);
    int count = 0;
    for (int i = 0; i < primes.Count; i++) {
        for (int j = 0; j < i - 1; j++) {
 
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if ((int)primes[j] + (int)primes[j + 1] + 1
                == (int)primes[i]) {
                count++;
                break;
            }
        }
 
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if (count == k)
            return true;
    }
    return false;
}
 
// Driver function
public static void Main()
{
    int n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        Console.WriteLine("YES");
    else
        Console.WriteLine("NO");
}
}
// This code is contributed by mits

PHP




<?php
// PHP program to check whether there
// exist at least k or not in range [2..n]
$primes = array();
 
// Generating all the prime numbers
// from 2 to n.
function SieveofEratosthenes($n)
{
    global $primes;
    $visited = array_fill(0, $n, false);
    for ($i = 2; $i <= $n + 1; $i++)
        if (!$visited[$i])
        {
            for ($j = $i * $i;
                 $j <= $n + 1; $j += $i)
                $visited[$j] = true;
            array_push($primes, $i);
        }
}
 
function specialPrimeNumbers($n, $k)
{
    global $primes;
    SieveofEratosthenes($n);
    $count = 0;
    for ($i = 0; $i < count($primes); $i++)
    {
        for ($j = 0; $j < $i - 1; $j++)
        {
 
            // If a prime number is Special prime
            // number, then we increments the
            // value of k.
            if ($primes[$j] +
                $primes[$j + 1] + 1 == $primes[$i])
            {
                $count++;
                break;
            }
        }
 
        // If at least k Special prime numbers
        // are present, then we return 1.
        // else we return 0 from outside of
        // the outer loop.
        if ($count == $k)
            return true;
    }
    return false;
}
 
// Driver Code
$n = 27;
$k = 2;
if (specialPrimeNumbers($n, $k))
    echo "YES\n";
else
    echo "NO\n";
 
// This code is contributed by mits
?>

Javascript




<script>
 
    // Javascript program to check whether there
    // exist at least k or not in range [2..n]
     
    let primes = [];
   
    // Generating all the prime numbers
    // from 2 to n.
    function SieveofEratosthenes(n)
    {
        let visited = new Array(n);
        visited.fill(false);
        for (let i = 2; i <= n + 1; i++)
            if (!visited[i]) {
                for (let j = i * i; j <= n + 1; j += i)
                    visited[j] = true;
                primes.push(i);
            }
    }
 
    function specialPrimeNumbers(n, k)
    {
        SieveofEratosthenes(n);
        let count = 0;
        for (let i = 0; i < primes.length; i++) {
            for (let j = 0; j < i - 1; j++) {
 
                // If a prime number is Special prime
                // number, then we increments the
                // value of k.
                if (primes[j] + primes[j + 1] + 1
                    == primes[i]) {
                    count++;
                    break;
                }
            }
 
            // If at least k Special prime numbers
            // are present, then we return 1.
            // else we return 0 from outside of
            // the outer loop.
            if (count == k)
                return true;
        }
        return false;
    }
     
    let n = 27, k = 2;
    if (specialPrimeNumbers(n, k))
        document.write("YES");
    else
        document.write("NO");
 
</script>

Output:-

 YES

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :