Source to destination in 2-D path with fixed sized jumps

Given the source point and the destination point of the path and two integers x and y. The task is to check whether it is possible to move from source to the destination with the below moves, If current position is (a, b) then the valid moves are:

  1. (a + x, b + y)
  2. (a – x, b + y)
  3. (a + x, b – y)
  4. (a – x, b – y)

Examples:

Input: Sx = 0, Sy = 0, Dx = 0, Dy = 6, x = 2, y = 3
Output: Yes
(0, 0) -> (2, 3) -> (0, 6)

Input: Sx = 1, Sy = 1, Dx = 3, Dy = 6, x = 1, y = 5
Output: No



Approach: Let’s approach this problem as if the steps were (a, b) -> (a + x, 0) or (a, b) -> (a – x, 0) or (a, b) -> (0, b + y) or (a, b) -> (0, b – y). Then the answer is Yes if |Sx – Dx| mod x = 0 and |Sy – Dy| mod y = 0.

It’s easy to see that if the answer to this problem is NO then the answer to the original problem is also NO.

Let’s return to the original problem and take a look at some sequence of steps. It ends in some point (xe, ye). Define cntx as |xe – Sx| / x and cnty as |ye – Sy| / y . The parity of cntx is the same as the parity of cnty because every type of move changes the parity of both cntx and cnty.

So the answer is Yes if |Sx – Dx| mod x = 0, |Sy – Dy| mod y = 0 and |Sx – Dx| / x mod 2 = |Sy – Dy| / y mod 2.

Below is the implementation of the above approach.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function that returns true if
// it is possible to move from source
// to the destination with the given moves
bool isPossible(int Sx, int Sy, int Dx, int Dy, int x, int y)
{
    if (abs(Sx - Dx) % x == 0
        and abs(Sy - Dy) % y == 0
        and (abs(Sx - Dx) / x) % 2 == (abs(Sy - Dy) / y) % 2)
        return true;
  
    return false;
}
  
// Driver code
int main()
{
    int Sx = 0, Sy = 0, Dx = 0, Dy = 0;
    int x = 3, y = 4;
  
    if (isPossible(Sx, Sy, Dx, Dy, x, y))
        cout << "Yes";
    else
        cout << "No";
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java .io.*;
  
class GFG
{
      
// Function that returns true if
// it is possible to move from source
// to the destination with the given moves
static boolean isPossible(int Sx, int Sy, int Dx,
                          int Dy, int x, int y)
{
    if (Math.abs(Sx - Dx) % x == 0 && 
        Math.abs(Sy - Dy) % y == 0 && 
       (Math.abs(Sx - Dx) / x) % 2 == 
       (Math.abs(Sy - Dy) / y) % 2)
        return true;
  
    return false;
}
  
// Driver code
public static void main(String[] args)
{
    int Sx = 0, Sy = 0, Dx = 0, Dy = 0;
    int x = 3, y = 4;
  
    if (isPossible(Sx, Sy, Dx, Dy, x, y))
        System.out.println("Yes");
    else
        System.out.println("No");
}
}
  
// This code is contributed by inder_verma..

chevron_right


Python3

# Python3 implementation of the approach

# Function that returns true if it is
# possible to move from source to the
# destination with the given moves
def isPossible(Sx, Sy, Dx, Dy, x, y):
if (abs(Sx – Dx) % x == 0 and
abs(Sy – Dy) % y == 0 and
(abs(Sx – Dx) / x) % 2 ==
(abs(Sy – Dy) / y) % 2):
return True;
return False;

# Driver code
Sx = 0;
Sy = 0;
Dx = 0;
Dy = 0;
x = 3;
y = 4;

if (isPossible(Sx, Sy, Dx, Dy, x, y)):
print(“Yes”);
else:
print(“No”);

# This code is contributed by mits

C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
      
// Function that returns true if
// it is possible to move from source
// to the destination with the given moves
static bool isPossible(int Sx, int Sy, int Dx,
                        int Dy, int x, int y)
{
    if (Math.Abs(Sx - Dx) % x == 0 && 
        Math.Abs(Sy - Dy) % y == 0 && 
        (Math.Abs(Sx - Dx) / x) % 2 == 
        (Math.Abs(Sy - Dy) / y) % 2)
        return true;
  
    return false;
}
  
// Driver code
static void Main()
{
    int Sx = 0, Sy = 0, Dx = 0, Dy = 0;
    int x = 3, y = 4;
  
    if (isPossible(Sx, Sy, Dx, Dy, x, y))
        Console.WriteLine("Yes");
    else
        Console.WriteLine("No");
}
}
  
// This code is contributed by chandan_jnu

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function that returns true if
// it is possible to move from source
// to the destination with the given moves
function isPossible($Sx, $Sy, $Dx,
                    $Dy, $x, $y)
{
    if (abs($Sx - $Dx) % $x == 0 && 
        abs($Sy - $Dy) % $y == 0 && 
       (abs($Sx - $Dx) / $x) % 2 == 
       (abs($Sy - $Dy) / $y) % 2)
        return true;
  
    return false;
}
  
// Driver code
$Sx = 0; $Sy = 0; $Dx = 0; 
$Dy = 0; $x = 3; $y = 4;
  
if (isPossible($Sx, $Sy, $Dx
               $Dy, $x, $y))
    echo("Yes");
else
    echo("No");
  
// This code is contributed 
// by Code_Mech
?>

chevron_right


Output:

Yes


My Personal Notes arrow_drop_up

pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.