Sorting using trivial hash function
We have read about various sorting algorithms such as heap sort, bubble sort, merge sort and others.
Here we will see how can we sort N elements using a hash array. But this algorithm has a limitation. We can sort only those N elements, where the value of elements is not large (typically not above 10^6).
Examples:
Input : 9 4 3 5 8
Output : 3 4 5 8 9
Explanation of sorting using hash:
- Step 1: Create a hash array of size(max_element), since that is the maximum we will need
- Step 2: Traverse through all the elements and keep a count of number of occurrence of a particular element.
- Step 3: After keeping a count of occurrence of all elements in the hash table, simply iterate from 0 to max_element in the hash array
- Step 4: While iterating in the hash array, if we find the value stored at any hash position is more than 0, which indicated that the element is present at least once in the original list of elements.
- Step 5: Hash[i] has the count of the number of times an element is present in the list, so when its >0, we print those number of times the element.
- If you want to store the elements, use another array to store them in a sorted way.
- If we want to sort it in descending order, we simply traverse from max to 0 and repeat the same procedure.
Below is the implementation of the above approach:
C++
// C++ program to sort an array using hash // function #include <bits/stdc++.h> using namespace std; void sortUsingHash( int a[], int n) { // find the maximum element int max = *std::max_element(a, a + n); // create a hash function upto the max size int hash[max + 1] = { 0 }; // traverse through all the elements and // keep a count for ( int i = 0; i < n; i++) hash[a[i]] += 1; // Traverse upto all elements and check if // it is present or not. If it is present, // then print the element the number of times // it's present. Once we have printed n times, // that means we have printed n elements // so break out of the loop for ( int i = 0; i <= max; i++) { // if present if (hash[i]) { // print the element that number of // times it's present for ( int j = 0; j < hash[i]; j++) { cout << i << " " ; } } } } // driver program int main() { int a[] = { 9, 4, 3, 2, 5, 2, 1, 0, 4, 3, 5, 10, 15, 12, 18, 20, 19 }; int n = sizeof (a) / sizeof (a[0]); sortUsingHash(a, n); return 0; } |
Java
// Java program to sort an array using hash // function import java.util.*; class GFG { static void sortUsingHash( int a[], int n) { // find the maximum element int max = Arrays.stream(a).max().getAsInt(); // create a hash function upto the max size int hash[] = new int [max + 1 ]; // traverse through all the elements and // keep a count for ( int i = 0 ; i < n; i++) hash[a[i]] += 1 ; // Traverse upto all elements and check if // it is present or not. If it is present, // then print the element the number of times // it's present. Once we have printed n times, // that means we have printed n elements // so break out of the loop for ( int i = 0 ; i <= max; i++) { // if present if (hash[i] != 0 ) { // print the element that number of // times it's present for ( int j = 0 ; j < hash[i]; j++) { System.out.print(i + " " ); } } } } // Driver code public static void main(String[] args) { int a[] = { 9 , 4 , 3 , 2 , 5 , 2 , 1 , 0 , 4 , 3 , 5 , 10 , 15 , 12 , 18 , 20 , 19 }; int n = a.length; sortUsingHash(a, n); } } // This code contributed by Rajput-Ji |
Python3
# Python3 program to sort an array # using hash function def sortUsingHash(a, n): # find the maximum element Max = max (a) # create a hash function upto # the max size Hash = [ 0 ] * ( Max + 1 ) # traverse through all the elements # and keep a count for i in range ( 0 , n): Hash [a[i]] + = 1 # Traverse upto all elements and check # if it is present or not. If it is # present, then print the element the # number of times it's present. Once we # have printed n times, that means we # have printed n elements so break out # of the loop for i in range ( 0 , Max + 1 ): # if present if Hash [i] ! = 0 : # print the element that number # of times it's present for j in range ( 0 , Hash [i]): print (i, end = " " ) # Driver Code if __name__ = = "__main__" : a = [ 9 , 4 , 3 , 2 , 5 , 2 , 1 , 0 , 4 , 3 , 5 , 10 , 15 , 12 , 18 , 20 , 19 ] n = len (a) sortUsingHash(a, n) # This code is contributed by Rituraj Jain |
C#
// C# program to sort an array using hash // function using System; using System.Linq; class GFG { static void sortUsingHash( int [] a, int n) { // find the maximum element int max = a.Max(); // create a hash function upto the max size int [] hash = new int [max + 1]; // traverse through all the elements and // keep a count for ( int i = 0; i < n; i++) hash[a[i]] += 1; // Traverse upto all elements and check if // it is present or not. If it is present, // then print the element the number of times // it's present. Once we have printed n times, // that means we have printed n elements // so break out of the loop for ( int i = 0; i <= max; i++) { // if present if (hash[i] != 0) { // print the element that number of // times it's present for ( int j = 0; j < hash[i]; j++) { Console.Write(i + " " ); } } } } // Driver code public static void Main(String[] args) { int [] a = { 9, 4, 3, 2, 5, 2, 1, 0, 4, 3, 5, 10, 15, 12, 18, 20, 19 }; int n = a.Length; sortUsingHash(a, n); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // javascript program to sort an array using hash // function function sortUsingHash(a, n) { // find the maximum element var max = Math.max.apply(Math, a); // create a hash function upto the max size var hash = Array(max + 1).fill(0); // traverse through all the elements and // keep a count for (i = 0; i < n; i++) hash[a[i]] += 1; // Traverse upto all elements and check if // it is present or not. If it is present, // then print the element the number of times // it's present. Once we have printed n times, // that means we have printed n elements // so break out of the loop for (i = 0; i <= max; i++) { // if present if (hash[i] != 0) { // print the element that number of // times it's present for (j = 0; j < hash[i]; j++) { document.write(i + " " ); } } } } // Driver code var a = [ 9, 4, 3, 2, 5, 2, 1, 0, 4, 3, 5, 10, 15, 12, 18, 20, 19 ]; var n = a.length; sortUsingHash(a, n); // This code contributed by Rajput-Ji </script> |
0 1 2 2 3 3 4 4 5 5 9 10 12 15 18 19 20
Time Complexity: O(max*n), where max is maximum element and n is the length of given array
Auxiliary Space: O(max)
How to handle negative numbers?
In case the array has negative numbers and positive numbers, we keep two hash arrays to keep a track of positive and negative elements.
Explanation of sorting using hashing if the array has negative and positive numbers:
- Step 1: Create two hash arrays, one for positive and the other for negative
- Step 2: the positive hash array will have a size of max and the negative array will have a size of min
- Step 3: traverse from min to 0 in the negative hash array, and print the elements in the same way we did for positives.
- Step 4: Traverse from 0 to max for positive elements and print them in the same manner as explained above.
Below is the implementation of the above approach:
C++
// C++ program to sort an array using hash // function with negative values allowed. #include <bits/stdc++.h> using namespace std; void sortUsingHash( int a[], int n) { // find the maximum element int max = *std::max_element(a, a + n); int min = abs (*std::min_element(a, a + n)); // create a hash function upto the max size int hashpos[max + 1] = { 0 }; int hashneg[min + 1] = { 0 }; // traverse through all the elements and // keep a count for ( int i = 0; i < n; i++) { if (a[i] >= 0) hashpos[a[i]] += 1; else hashneg[ abs (a[i])] += 1; } // Traverse up to all negative elements and // check if it is present or not. If it is // present, then print the element the number // of times it's present. Once we have printed // n times, that means we have printed n elements // so break out of the loop for ( int i = min; i > 0; i--) { if (hashneg[i]) { // print the element that number of times // it's present. Print the negative element for ( int j = 0; j < hashneg[i]; j++) { cout << (-1) * i << " " ; } } } // Traverse upto all elements and check if it is // present or not. If it is present, then print // the element the number of times it's present // once we have printed n times, that means we // have printed n elements, so break out of the // loop for ( int i = 0; i <= max; i++) { // if present if (hashpos[i]) { // print the element that number of times // it's present for ( int j = 0; j < hashpos[i]; j++) { cout << i << " " ; } } } } // driver program to test the above function int main() { int a[] = { -1, -2, -3, -4, -5, -6, 8, 7, 5, 4, 3, 2, 1, 0 }; int n = sizeof (a) / sizeof (a[0]); sortUsingHash(a, n); return 0; } |
Java
// Java program to sort an array using hash // function with negative values allowed. import java.util.Arrays; class GFG { static int absolute( int x) { if (x < 0 ) return (- 1 * x); return x; } static void sortUsingHash( int a[], int n) { // find the maximum element int max = Arrays.stream(a).max().getAsInt(); int min = absolute(Arrays.stream(a).min().getAsInt()); // create a hash function upto the max size int hashpos[] = new int [max + 1 ]; int hashneg[] = new int [min + 1 ]; // traverse through all the elements and // keep a count for ( int i = 0 ; i < n; i++) { if (a[i] >= 0 ) hashpos[a[i]] += 1 ; else hashneg[absolute(a[i])] += 1 ; } // Traverse up to all negative elements and // check if it is present or not. If it is // present, then print the element the number // of times it's present. Once we have printed // n times, that means we have printed n elements // so break out of the loop for ( int i = min; i > 0 ; i--) { if (hashneg[i] > 0 ) { // print the element that number of times // it's present. Print the negative element for ( int j = 0 ; j < hashneg[i]; j++) { System.out.print((- 1 ) * i + " " ); } } } // Traverse upto all elements and check if it is // present or not. If it is present, then print // the element the number of times it's present // once we have printed n times, that means we // have printed n elements, so break out of the // loop for ( int i = 0 ; i <= max; i++) { // if present if (hashpos[i] > 0 ) { // print the element that number of times // it's present for ( int j = 0 ; j < hashpos[i]; j++) { System.out.print(i + " " ); } } } } // Driver program to test the above function public static void main(String[] args) { int a[] = { - 1 , - 2 , - 3 , - 4 , - 5 , - 6 , 8 , 7 , 5 , 4 , 3 , 2 , 1 , 0 }; int n = a.length; sortUsingHash(a, n); } } // This code has been contributed by 29AjayKumar |
Python3
# Python3 program to sort an array using hash # function with negative values allowed. def sortUsingHash(a, n): # find the maximum element Max = max (a) Min = abs ( min (a)) # create a hash function upto the max size hashpos = [ 0 ] * ( Max + 1 ) hashneg = [ 0 ] * ( Min + 1 ) # traverse through all the elements and # keep a count for i in range ( 0 , n): if a[i] > = 0 : hashpos[a[i]] + = 1 else : hashneg[ abs (a[i])] + = 1 # Traverse up to all negative elements # and check if it is present or not. # If it is present, then print the # element the number of times it's present. # Once we have printed n times, that means # we have printed n elements so break out # of the loop for i in range ( Min , 0 , - 1 ): if hashneg[i] ! = 0 : # print the element that number of times # it's present. Print the negative element for j in range ( 0 , hashneg[i]): print (( - 1 ) * i, end = " " ) # Traverse upto all elements and check if # it is present or not. If it is present, # then print the element the number of # times it's present once we have printed # n times, that means we have printed n # elements, so break out of the loop for i in range ( 0 , Max + 1 ): # if present if hashpos[i] ! = 0 : # print the element that number # of times it's present for j in range ( 0 , hashpos[i]): print (i, end = " " ) # Driver Code if __name__ = = "__main__" : a = [ - 1 , - 2 , - 3 , - 4 , - 5 , - 6 , 8 , 7 , 5 , 4 , 3 , 2 , 1 , 0 ] n = len (a) sortUsingHash(a, n) # This code is contributed by Rituraj Jain |
C#
// C# program to sort an array using hash // function with negative values allowed. using System; using System.Linq; class GFG { static int absolute( int x) { if (x < 0) return (-1 * x); return x; } static void sortUsingHash( int [] a, int n) { // find the maximum element int max = a.Max(); int min = absolute(a.Min()); // create a hash function upto the max size int [] hashpos = new int [max + 1]; int [] hashneg = new int [min + 1]; // traverse through all the elements and // keep a count for ( int i = 0; i < n; i++) { if (a[i] >= 0) hashpos[a[i]] += 1; else hashneg[absolute(a[i])] += 1; } // Traverse up to all negative elements and // check if it is present or not. If it is // present, then print the element the number // of times it's present. Once we have printed // n times, that means we have printed n elements // so break out of the loop for ( int i = min; i > 0; i--) { if (hashneg[i] > 0) { // print the element that number of times // it's present. Print the negative element for ( int j = 0; j < hashneg[i]; j++) { Console.Write((-1) * i + " " ); } } } // Traverse upto all elements and check if it is // present or not. If it is present, then print // the element the number of times it's present // once we have printed n times, that means we // have printed n elements, so break out of the // loop for ( int i = 0; i <= max; i++) { // if present if (hashpos[i] > 0) { // print the element that number of times // it's present for ( int j = 0; j < hashpos[i]; j++) { Console.Write(i + " " ); } } } } // Driver code public static void Main(String[] args) { int [] a = { -1, -2, -3, -4, -5, -6, 8, 7, 5, 4, 3, 2, 1, 0 }; int n = a.Length; sortUsingHash(a, n); } } /* This code contributed by PrinciRaj1992 */ |
Javascript
<script> // javascript program to sort an array using hash // function with negative values allowed. function absolute(int x){ if (x<0) return (-1*x); return x; } function sortUsingHash(a, n) { // find the maximum element var max = Math.max.apply(Math, a); var min = absolute(Math.min.apply(Math, a)); // create a hash function upto the max size var hashpos = Array(max).fill(0); var hashneg = Array(min + 1).fill(0); // traverse through all the elements and // keep a count for (i = 0; i < n; i++) { if (a[i] >= 0) hashpos[a[i]] += 1; else hashneg[absolute(a[i])] += 1; } // Traverse up to all negative elements and // check if it is present or not. If it is // present, then print the element the number // of times it's present. Once we have printed // n times, that means we have printed n elements // so break out of the loop for (i = min; i > 0; i--) { if (hashneg[i] > 0) { // print the element that number of times // it's present. Print the negative element for (j = 0; j < hashneg[i]; j++) { document.write((-1) * i + " " ); } } } // Traverse upto all elements and check if it is // present or not. If it is present, then print // the element the number of times it's present // once we have printed n times, that means we // have printed n elements, so break out of the // loop for (i = 0; i <= max; i++) { // if present if (hashpos[i] > 0) { // print the element that number of times // it's present for (j = 0; j < hashpos[i]; j++) { document.write(i + " " ); } } } } // Driver program to test the above function var a = [ -1, -2, -3, -4, -5, -6, 8, 7, 5, 4, 3, 2, 1, 0 ]; var n = a.length; sortUsingHash(a, n); // This code contributed by Rajput-Ji </script> |
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 7 8
Complexity:
This sort function can have complexity O(max_element). So performance depends on that set of data provided.
Limitations:
- Can only sort array elements of limited range (typically from -10^6 to +10^6)
- Auxiliary space in worst cases is O(max_element) + O(min_element)
Please Login to comment...