Sorting possible using size 3 subarray rotation
Given an array of integer values which need to be sorted by only one operation – subarray rotation where subarray size should be 3. For example, If our array is (1 2 3 4) then we can reach to (1 4 2 3), (3 1 2 4) in one step. We need to tell whether it is possible to sort the complete array with this operation or not.
Examples :
Input : arr[] = [1, 3, 4, 2] Output : Yes Possible by below rotations, [1, 3, 4, 2] -> [1, 4, 2, 3] -> [1, 2, 3, 4] Input : arr[] = [1, 2, 4, 3] Output : No Not possible to sort above array by any 3 size subarray rotation.
Suppose we have one subarray as [A[i] A[i+1] A[i+2]]. After one rotation, we get [A[i+2], A[i], A[i+1]]
If we observe inversions before and after rotation, we can see that parity of inversion is not changed i.e. if [A[i] A[i+1] A[i+2]] has even number of inversions [A[i+2] A[i] A[i+1]] will have even inversions. Same is true for odd inversions. Due to movement of A[i+2], inversions either increase by 2 or decrease by 2 or remain same i.e. their parity won’t change.
After observing above fact we can say that if initial array configuration has even number of inversion then it is possible to make them zero making array completely sorted otherwise not. We use merge sort based method for counting inversions. After getting the number of inversions, we can easily check parity of inversion and conclude whether it is possible to sort the array or not.
Implementation:
C++
// C++ program to check whether we can sort // given array using 3 size subarray rotation // or not #include <bits/stdc++.h> using namespace std; /* This function merges two sorted arrays and returns inversion count in the arrays.*/ int merge( int arr[], int temp[], int left, int mid, int right) { int i, j, k; int inv_count = 0; i = left; /* i is index for left subarray*/ j = mid; /* j is index for right subarray*/ k = left; /* k is index for resultant merged subarray*/ while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) temp[k++] = arr[i++]; else { temp[k++] = arr[j++]; /* this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid - i); } } /* Copy the remaining elements of left subarray (if there are any) to temp */ while (i <= mid - 1) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /* Copy back the merged elements to original array */ for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ int _mergeSort( int arr[], int temp[], int left, int right) { int mid, inv_count = 0; if (right > left) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (right + left)/2; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid+1, right); /* Merge the two parts */ inv_count += merge(arr, temp, left, mid+1, right); } return inv_count; } /* This function sorts the input array and returns the number of inversions in the array */ int mergeSort( int arr[], int array_size) { int *temp = ( int *) malloc ( sizeof ( int )*array_size); return _mergeSort(arr, temp, 0, array_size - 1); } // method returns true is array can be sorted by 3 // size subarray rotation bool possibleSortingBy3SizeSubarray( int arr[], int N) { int numberOfInversion = mergeSort(arr, N); // if number of inversions are even then only // we can sort the array return (numberOfInversion % 2 == 0); } // Driver code to test above methods int main() { int arr[] = {1, 3, 4, 2}; int N = sizeof (arr) / sizeof ( int ); possibleSortingBy3SizeSubarray(arr, N)? cout << "Yes\n" : cout << "No\n" ; } |
Java
// Java program to check whether we can sort // given array using 3 size subarray rotation // or not import java.io.*; class GFG { /* This function merges two sorted arrays and returns inversion count in the arrays.*/ public static int merge( int [] arr, int left, int mid, int right) { int [] temp = new int [arr.length]; int inv_count = 0 ; int i = left; /* i is index for left subarray*/ int j = mid; /* j is index for right subarray*/ int k = left; /* k is index for resultant merged subarray*/ while ((i <= mid- 1 ) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i]; i++; } else { temp[k++] = arr[j]; j++; /* this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid-i); } } /* Copy the remaining elements of left subarray (if there are any) to temp */ while (i <= (mid- 1 )) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /* Copy back the merged elements to original array */ for ( int l = left; l <= right; l++) arr[l] = temp[l]; return inv_count; } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ public static int _mergeSort( int [] arr, int left, int right) { int mid, inv_count = 0 ; if (left < right) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (left + right)/ 2 ; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, left, mid); inv_count += _mergeSort(arr, mid+ 1 , right); inv_count += merge(arr, left, mid+ 1 , right); } return inv_count; } /* This function sorts the input array and returns the number of inversions in the array */ public static int mergeSort( int [] arr, int N) { return _mergeSort(arr, 0 , N- 1 ); } public static boolean possibleSortingBy3SizeSubarray( int arr[], int N) { int numberOfInversion = mergeSort(arr, N); // if number of inversions are even then only // we can sort the array return (numberOfInversion % 2 == 0 ); } // Driver code to test above methods public static void main (String[] args) { int arr[] = { 1 , 3 , 4 , 2 }; int N = arr.length; if (possibleSortingBy3SizeSubarray(arr, N)) System.out.println( "Yes" ); else System.out.println( "No" ); } } |
Python3
# Python3 program to check whether we can sort # given array using 3 size subarray rotation or not # This function merges two sorted arrays and # returns inversion count in the arrays. def merge(arr, temp, left, mid, right): # i is index for left subarray # j is index for right subarray # k is index for resultant merged subarray i, j, k, inv_count = left, mid, left, 0 while (i < = mid - 1 ) and (j < = right): if arr[i] < = arr[j]: temp[k] = arr[i] k, i = k + 1 , i + 1 else : temp[k] = arr[j] k, j = k + 1 , j + 1 # This is tricky -- see above # explanation/diagram for merge() inv_count = inv_count + (mid - i) # Copy the remaining elements of left # subarray (if there are any) to temp while i < = mid - 1 : temp[k] = arr[i] k, i = k + 1 , i + 1 # Copy the remaining elements of right # subarray (if there are any) to temp while j < = right: temp[k] = arr[j] k, j = k + 1 , j + 1 # Copy back the merged elements # to original array for i in range (left, right + 1 ): arr[i] = temp[i] return inv_count # An auxiliary recursive function that # sorts the input array and returns the # number of inversions in the array. def _mergeSort(arr, temp, left, right): inv_count = 0 if right > left: # Divide the array into two parts # and call _mergeSortAndCountInv() # for each of the parts mid = (right + left) / / 2 # Inversion count will be sum of # inversions in left-part, right-part # and number of inversions in merging inv_count = _mergeSort(arr, temp, left, mid) inv_count + = _mergeSort(arr, temp, mid + 1 , right) # Merge the two parts inv_count + = merge(arr, temp, left, mid + 1 , right) return inv_count # This function sorts the input array and # returns the number of inversions in the array def mergeSort(arr, array_size): temp = [ None ] * array_size return _mergeSort(arr, temp, 0 , array_size - 1 ) # method returns true is array can be # sorted by 3 size subarray rotation def possibleSortingBy3SizeSubarray(arr, N): numberOfInversion = mergeSort(arr, N) # if number of inversions are even # then only we can sort the array return (numberOfInversion % 2 = = 0 ) # Driver Code if __name__ = = "__main__" : arr = [ 1 , 3 , 4 , 2 ] N = len (arr) if possibleSortingBy3SizeSubarray(arr, N): print ( "Yes" ) else : print ( "No" ) # This code is contributed by Rituraj Jain |
C#
// C# program to check whether we // can sort given array using 3 size // subarray rotation or not. using System; class GFG { /* This function merges two sorted arrays and returns inversion count in the arrays.*/ public static int merge( int []arr, int left, int mid, int right) { int []temp = new int [arr.Length]; int inv_count = 0; /* i is index for left subarray*/ int i = left; /* j is index for right subarray*/ int j = mid; /* k is index for resultant merged subarray*/ int k = left; while ((i <= mid-1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i]; i++; } else { temp[k++] = arr[j]; j++; /* this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid-i); } } /* Copy the remaining elements of left subarray (if there are any) to temp */ while (i <= (mid-1)) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /* Copy back the merged elements to original array */ for ( int l = left; l <= right; l++) arr[l] = temp[l]; return inv_count; } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ public static int _mergeSort( int []arr, int left, int right) { int mid, inv_count = 0; if (left < right) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (left + right)/2; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, left, mid); inv_count += _mergeSort(arr, mid+1, right); inv_count += merge(arr, left, mid+1, right); } return inv_count; } /* This function sorts the input array and returns the number of inversions in the array */ public static int mergeSort( int [] arr, int N) { return _mergeSort(arr, 0, N-1); } public static bool possibleSortingBy3SizeSubarray( int []arr, int N) { int numberOfInversion = mergeSort(arr, N); // if number of inversions are even // then only we can sort the array return (numberOfInversion % 2 == 0); } // Driver code to test above methods public static void Main () { int []arr = {1, 3, 4, 2}; int N = arr.Length; if (possibleSortingBy3SizeSubarray(arr, N)) Console.Write( "Yes" ); else Console.Write( "No" ); } } // This code is contributed by nitin mittal. |
Javascript
<script> // JavaScript program to check whether we can sort // given array using 3 size subarray rotation // or not /* This function merges two sorted arrays and returns inversion count in the arrays.*/ function merge(arr, left, mid, right) { let temp = new Array(arr.length); let inv_count = 0; let i = left; /* i is index for left subarray*/ let j = mid; /* j is index for right subarray*/ let k = left; /* k is index for resultant merged subarray*/ while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i]; i++; } else { temp[k++] = arr[j]; j++; /* this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid - i); } } /* Copy the remaining elements of left subarray (if there are any) to temp */ while (i <= (mid - 1)) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /* Copy back the merged elements to original array */ for (let l = left; l <= right; l++) arr[l] = temp[l]; return inv_count; } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ function _mergeSort(arr, left, right) { let mid, inv_count = 0; if (left < right) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = Math.floor((left + right) / 2); /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, left, mid); inv_count += _mergeSort(arr, mid + 1, right); inv_count += merge(arr, left, mid + 1, right); } return inv_count; } /* This function sorts the input array and returns the number of inversions in the array */ function mergeSort(arr, N) { return _mergeSort(arr, 0, N - 1); } function possibleSortingBy3SizeSubarray(arr, N) { let numberOfInversion = mergeSort(arr, N); // if number of inversions are even then only // we can sort the array return (numberOfInversion % 2 == 0); } // Driver code to test above methods let arr = [1, 3, 4, 2]; let N = arr.length; if (possibleSortingBy3SizeSubarray(arr, N)) document.write( "Yes" ); else document.write( "No" ); </script> |
Yes
Time Complexity : O(n Log n)
This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.