Related Articles

# A sorting algorithm that slightly improves on selection sort

• Difficulty Level : Easy
• Last Updated : 29 Apr, 2021

As we know, selection sort algorithm takes the minimum on every pass on the array, and place it at its correct position.
The idea is to take also the maximum on every pass and place it at its correct position. So in every pass, we keep track of both maximum and minimum and array becomes sorted from both ends.

Examples:

```First example: 7 8 5 4 9 2
Input :pass 1:|7 8 5 4 9 2|
pass 2: 2|8 5 4 7|9
pass 3: 2 4|5 7|8 9
Output :A sorted array:  2 4 5 7 8 9

second example: 23 78 45 8 32 56 1
Input :pass 1:|23 78 45 8 32 56 1|
pass 2: 1|23 45 8 32 56 |78
pass 3: 1 8|45 23 32|56 78
pass 4: 1 8 23 |32|45 56 78
in a case of odd elements, so one element
left for sorting, so sorting stops and the
array is sorted.
Output : A sorted array: 1 8 23 32 45 56 78```

## C++

 `// C++ program to implement min max selection``// sort.``#include ``using` `namespace` `std;` `void` `minMaxSelectionSort(``int``* arr, ``int` `n)``{``    ``for` `(``int` `i = 0, j = n - 1; i < j; i++, j--) {``        ``int` `min = arr[i], max = arr[i];``        ``int` `min_i = i, max_i = i;``        ``for` `(``int` `k = i; k <= j; k++)  {``            ``if` `(arr[k] > max) {``                ``max = arr[k];``                ``max_i = k;``            ``} ``else` `if` `(arr[k] < min) {``                ``min = arr[k];``                ``min_i = k;``            ``}``        ``}` `        ``// shifting the min.``        ``swap(arr[i], arr[min_i]);` `        ``// Shifting the max. The equal condition``        ``// happens if we shifted the max to arr[min_i]``        ``// in the previous swap.``        ``if` `(arr[min_i] == max)``            ``swap(arr[j], arr[min_i]);``        ``else``            ``swap(arr[j], arr[max_i]);``    ``}``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 23, 78, 45, 8, 32, 56, 1 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``minMaxSelectionSort(arr, n);``    ``printf``(``"Sorted array:\n"``);``    ``for` `(``int` `i = 0; i < n; i++)``        ``cout << arr[i] << ``" "``;``    ``cout << endl;``    ``return` `0;``}`

## Java

 `// Java program to implement min max selection``// sort.``class` `GFG``{``static` `void` `minMaxSelectionSort(``int``[] arr, ``int` `n)``{``    ``for` `(``int` `i = ``0``, j = n - ``1``; i < j; i++, j--)``    ``{``        ``int` `min = arr[i], max = arr[i];``        ``int` `min_i = i, max_i = i;``        ``for` `(``int` `k = i; k <= j; k++)``        ``{``            ``if` `(arr[k] > max)``            ``{``                ``max = arr[k];``                ``max_i = k;``            ``}``            ` `            ``else` `if` `(arr[k] < min)``            ``{``                ``min = arr[k];``                ``min_i = k;``            ``}``        ``}` `        ``// shifting the min.``        ``swap(arr, i, min_i);` `        ``// Shifting the max. The equal condition``        ``// happens if we shifted the max to arr[min_i]``        ``// in the previous swap.``        ``if` `(arr[min_i] == max)``            ``swap(arr, j, min_i);``        ``else``            ``swap(arr, j, max_i);``    ``}``}` `static` `int``[] swap(``int` `[]arr, ``int` `i, ``int` `j)``{``    ``int` `temp = arr[i];``    ``arr[i] = arr[j];``    ``arr[j] = temp;``    ``return` `arr;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``23``, ``78``, ``45``, ``8``, ``32``, ``56``, ``1` `};``    ``int` `n = arr.length;``    ``minMaxSelectionSort(arr, n);``    ``System.out.printf(``"Sorted array:\n"``);``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``System.out.print(arr[i] + ``" "``);``    ``System.out.println(``""``);``}``}` `// This code is contributed by Princi Singh`

## Python3

 `# Python3 program to implement min``# max selection sort.` `def` `minMaxSelectionSort(arr, n):``    ``i ``=` `0``    ``j ``=` `n ``-` `1``    ``while``(i < j):``        ``min` `=` `arr[i]``        ``max` `=` `arr[i]``        ``min_i ``=` `i``        ``max_i ``=` `i``        ``for` `k ``in` `range``(i, j ``+` `1``, ``1``):``            ``if` `(arr[k] > ``max``):``                ``max` `=` `arr[k]``                ``max_i ``=` `k``            ``elif` `(arr[k] < ``min``):``                ``min` `=` `arr[k]``                ``min_i ``=` `k``        ` `        ``# shifting the min.``        ``temp ``=` `arr[i]``        ``arr[i] ``=` `arr[min_i]``        ``arr[min_i] ``=` `temp` `        ``# Shifting the max. The equal condition``        ``# happens if we shifted the max to``        ``# arr[min_i] in the previous swap.``        ``if` `(arr[min_i] ``=``=` `max``):``            ``temp ``=` `arr[j]``            ``arr[j] ``=` `arr[min_i]``            ``arr[min_i] ``=` `temp``        ``else``:``            ``temp ``=` `arr[j]``            ``arr[j] ``=` `arr[max_i]``            ``arr[max_i] ``=` `temp` `        ``i ``+``=` `1``        ``j ``-``=` `1` `    ``print``(``"Sorted array:"``, end ``=` `" "``)``    ``for` `i ``in` `range``(n):``        ``print``(arr[i], end ``=` `" "``)` `# Driver code``if` `__name__``=``=` `'__main__'``:``    ``arr ``=` `[``23``, ``78``, ``45``, ``8``, ``32``, ``56``, ``1``]``    ``n ``=` `len``(arr)``    ``minMaxSelectionSort(arr, n)``    ` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# program to implement min max selection``// sort.``using` `System;` `class` `GFG``{``static` `void` `minMaxSelectionSort(``int``[] arr, ``int` `n)``{``    ``for` `(``int` `i = 0, j = n - 1;``             ``i < j; i++, j--)``    ``{``        ``int` `min = arr[i], max = arr[i];``        ``int` `min_i = i, max_i = i;``        ``for` `(``int` `k = i; k <= j; k++)``        ``{``            ``if` `(arr[k] > max)``            ``{``                ``max = arr[k];``                ``max_i = k;``            ``}``            ` `            ``else` `if` `(arr[k] < min)``            ``{``                ``min = arr[k];``                ``min_i = k;``            ``}``        ``}` `        ``// shifting the min.``        ``swap(arr, i, min_i);` `        ``// Shifting the max. The equal condition``        ``// happens if we shifted the max to arr[min_i]``        ``// in the previous swap.``        ``if` `(arr[min_i] == max)``            ``swap(arr, j, min_i);``        ``else``            ``swap(arr, j, max_i);``    ``}``}` `static` `int``[] swap(``int` `[]arr, ``int` `i, ``int` `j)``{``    ``int` `temp = arr[i];``    ``arr[i] = arr[j];``    ``arr[j] = temp;``    ``return` `arr;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `[]arr = { 23, 78, 45, 8, 32, 56, 1 };``    ``int` `n = arr.Length;``    ``minMaxSelectionSort(arr, n);``    ``Console.Write(``"Sorted array:\n"``);``    ``for` `(``int` `i = 0; i < n; i++)``        ``Console.Write(arr[i] + ``" "``);``    ``Console.WriteLine(``""``);``}``}` `// This code is contributed by Rajput-Ji`

## Javascript

 ``

Output:

` Sorted array: 1 8 23 32 45 56 78`

This article is contributed by Shlomi Elhaiani. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.