Open In App

Sort the Queue using Recursion

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Share
Report issue
Report

Given a queue and the task is to sort it using recursion without using any loop. We can only use the following functions of queue: 

empty(q): Tests whether the queue is empty or not. 
push(q): Adds a new element to the queue. 
pop(q): Removes front element from the queue. 
size(q): Returns the number of elements in a queue. 
front(q): Returns the value of the front element without removing it. 

Examples: 

Input: queue = {10, 7, 16, 9, 20, 5} 
Output: 5 7 9 10 16 20
Input: queue = {0, -2, -1, 2, 3, 1} 
Output: -2 -1 0 1 2 3 

Approach: The idea of the solution is to hold all values in the function call stack until the queue becomes empty. When the queue becomes empty, insert all held items one by one in sorted order. Here sorted order is important. 
How to manage sorted order? 
Whenever you get the item from the function call stack, then first calculate the size of the queue and compare it with the elements of queue. Here, two cases arises: 

  1. If the item (returned by function call stack) is greater than the front element of the queue then dequeue front element and enqueue this element into the same queue by decreasing the size.
  2. If the item is less than the front element from the queue then enqueue the element in the queue and dequeue the remaining element from the queue and enqueue by decreasing size repeat the case 1 and 2 unless size becomes zero. Take care of one thing, if size became zero and your element remains greater than all elements of the queue then push your element into the queue.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to push element in last by
// popping from front until size becomes 0
void FrontToLast(queue<int>& q, int qsize)
{
    // Base condition
    if (qsize <= 0)
        return;
 
    // pop front element and push
    // this last in a queue
    q.push(q.front());
    q.pop();
 
    // Recursive call for pushing element
    FrontToLast(q, qsize - 1);
}
 
// Function to push an element in the queue
// while maintaining the sorted order
void pushInQueue(queue<int>& q, int temp, int qsize)
{
 
    // Base condition
    if (q.empty() || qsize == 0) {
        q.push(temp);
        return;
    }
 
    // If current element is less than
    // the element at the front
    else if (temp <= q.front()) {
 
        // Call stack with front of queue
        q.push(temp);
 
        // Recursive call for inserting a front
        // element of the queue to the last
        FrontToLast(q, qsize);
    }
    else {
 
        // Push front element into
        // last in a queue
        q.push(q.front());
        q.pop();
 
        // Recursive call for pushing
        // element in a queue
        pushInQueue(q, temp, qsize - 1);
    }
}
 
// Function to sort the given
// queue using recursion
void sortQueue(queue<int>& q)
{
 
    // Return if queue is empty
    if (q.empty())
        return;
 
    // Get the front element which will
    // be stored in this variable
    // throughout the recursion stack
    int temp = q.front();
 
    // Remove the front element
    q.pop();
 
    // Recursive call
    sortQueue(q);
 
    // Push the current element into the queue
    // according to the sorting order
    pushInQueue(q, temp, q.size());
}
 
// Driver code
int main()
{
 
    // Push elements to the queue
    queue<int> qu;
    qu.push(10);
    qu.push(7);
    qu.push(16);
    qu.push(9);
    qu.push(20);
    qu.push(5);
 
    // Sort the queue
    sortQueue(qu);
 
    // Print the elements of the
    // queue after sorting
    while (!qu.empty()) {
        cout << qu.front() << " ";
        qu.pop();
    }
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
// Function to push element in last by
// popping from front until size becomes 0
static void FrontToLast(Queue<Integer> q,
                        int qsize)
{
    // Base condition
    if (qsize <= 0)
        return;
 
    // pop front element and push
    // this last in a queue
    q.add(q.peek());
    q.remove();
 
    // Recursive call for pushing element
    FrontToLast(q, qsize - 1);
}
 
// Function to push an element in the queue
// while maintaining the sorted order
static void pushInQueue(Queue<Integer> q,
                        int temp, int qsize)
{
 
    // Base condition
    if (q.isEmpty() || qsize == 0)
    {
        q.add(temp);
        return;
    }
 
    // If current element is less than
    // the element at the front
    else if (temp <= q.peek())
    {
 
        // Call stack with front of queue
        q.add(temp);
 
        // Recursive call for inserting a front
        // element of the queue to the last
        FrontToLast(q, qsize);
    }
    else
    {
 
        // Push front element into
        // last in a queue
        q.add(q.peek());
        q.remove();
 
        // Recursive call for pushing
        // element in a queue
        pushInQueue(q, temp, qsize - 1);
    }
}
 
// Function to sort the given
// queue using recursion
static void sortQueue(Queue<Integer> q)
{
 
    // Return if queue is empty
    if (q.isEmpty())
        return;
 
    // Get the front element which will
    // be stored in this variable
    // throughout the recursion stack
    int temp = q.peek();
 
    // Remove the front element
    q.remove();
 
    // Recursive call
    sortQueue(q);
 
    // Push the current element into the queue
    // according to the sorting order
    pushInQueue(q, temp, q.size());
}
 
// Driver code
public static void main(String[] args)
{
     
    // Push elements to the queue
    Queue<Integer> qu = new LinkedList<>();
    qu.add(10);
    qu.add(7);
    qu.add(16);
    qu.add(9);
    qu.add(20);
    qu.add(5);
 
    // Sort the queue
    sortQueue(qu);
 
    // Print the elements of the
    // queue after sorting
    while (!qu.isEmpty())
    {
        System.out.print(qu.peek() + " ");
        qu.remove();
    }
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# defining a class Queue
class Queue:
 
    def __init__(self):
        self.queue = []
 
    def put(self, item):
        self.queue.append(item)
 
    def get(self):
        if len(self.queue) < 1:
            return None
        return self.queue.pop(0)
         
    def front(self):
        return self.queue[0]
 
    def size(self):
        return len(self.queue)
         
    def empty(self):
        return not(len(self.queue))
 
# Function to push element in last by
# popping from front until size becomes 0
def FrontToLast(q, qsize) :
 
    # Base condition
    if qsize <= 0:
        return
 
    # pop front element and push
    # this last in a queue
    q.put(q.get())
 
    # Recursive call for pushing element
    FrontToLast(q, qsize - 1)
 
# Function to push an element in the queue
# while maintaining the sorted order
def pushInQueue(q, temp, qsize) :
     
    # Base condition
    if q.empty() or qsize == 0:
        q.put(temp)
        return
     
    # If current element is less than
    # the element at the front
    elif temp <= q.front() :
 
        # Call stack with front of queue
        q.put(temp)
 
        # Recursive call for inserting a front
        # element of the queue to the last
        FrontToLast(q, qsize)
 
    else :
 
        # Push front element into
        # last in a queue
        q.put(q.get())
 
        # Recursive call for pushing
        # element in a queue
        pushInQueue(q, temp, qsize - 1)
     
# Function to sort the given
# queue using recursion
def sortQueue(q):
     
    # Return if queue is empty
    if q.empty():
        return
 
    # Get the front element which will
    # be stored in this variable
    # throughout the recursion stack
    temp = q.get()
     
    # Recursive call
    sortQueue(q)
 
    # Push the current element into the queue
    # according to the sorting order
    pushInQueue(q, temp, q.size())
 
# Driver code
qu = Queue()
 
# Data is inserted into Queue
# using put() Data is inserted
# at the end
qu.put(10)
qu.put(7)
qu.put(16)
qu.put(9)
qu.put(20)
qu.put(5)
 
# Sort the queue
sortQueue(qu)
 
# Print the elements of the
# queue after sorting
while not qu.empty():
    print(qu.get(), end = ' ')
         
# This code is contributed by Sadik Ali


C#




// Program to print the given pattern
using System;
using System.Collections.Generic;
 
class GFG
{
 
// Function to push element in last by
// popping from front until size becomes 0
static void FrontToLast(Queue<int> q,
                        int qsize)
{
    // Base condition
    if (qsize <= 0)
        return;
 
    // pop front element and push
    // this last in a queue
    q.Enqueue(q.Peek());
    q.Dequeue();
 
    // Recursive call for pushing element
    FrontToLast(q, qsize - 1);
}
 
// Function to push an element in the queue
// while maintaining the sorted order
static void pushInQueue(Queue<int> q,
                        int temp, int qsize)
{
 
    // Base condition
    if (q.Count == 0 || qsize == 0)
    {
        q.Enqueue(temp);
        return;
    }
 
    // If current element is less than
    // the element at the front
    else if (temp <= q.Peek())
    {
 
        // Call stack with front of queue
        q.Enqueue(temp);
 
        // Recursive call for inserting a front
        // element of the queue to the last
        FrontToLast(q, qsize);
    }
    else
    {
 
        // Push front element into
        // last in a queue
        q.Enqueue(q.Peek());
        q.Dequeue();
 
        // Recursive call for pushing
        // element in a queue
        pushInQueue(q, temp, qsize - 1);
    }
}
 
// Function to sort the given
// queue using recursion
static void sortQueue(Queue<int> q)
{
 
    // Return if queue is empty
    if (q.Count==0)
        return;
 
    // Get the front element which will
    // be stored in this variable
    // throughout the recursion stack
    int temp = q.Peek();
 
    // Remove the front element
    q.Dequeue();
 
    // Recursive call
    sortQueue(q);
 
    // Push the current element into the queue
    // according to the sorting order
    pushInQueue(q, temp, q.Count);
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Push elements to the queue
    Queue<int> qu = new Queue<int>();
    qu.Enqueue(10);
    qu.Enqueue(7);
    qu.Enqueue(16);
    qu.Enqueue(9);
    qu.Enqueue(20);
    qu.Enqueue(5);
 
    // Sort the queue
    sortQueue(qu);
 
    // Print the elements of the
    // queue after sorting
    while (qu.Count != 0)
    {
        Console.Write(qu.Peek() + " ");
        qu.Dequeue();
    }
}
}
 
// This code is contributed by Princi Singh


Javascript




<script>
    // Javascript implementation of the approach
     
    // Function to push element in last by
    // popping from front until size becomes 0
    function FrontToLast(q, qsize)
    {
        // Base condition
        if (qsize <= 0)
            return;
 
        // pop front element and push
        // this last in a queue
        q.push(q[0]);
        q.shift();
 
        // Recursive call for pushing element
        FrontToLast(q, qsize - 1);
    }
 
    // Function to push an element in the queue
    // while maintaining the sorted order
    function pushInQueue(q, temp, qsize)
    {
 
        // Base condition
        if (q.length == 0 || qsize == 0)
        {
            q.push(temp);
            return;
        }
 
        // If current element is less than
        // the element at the front
        else if (temp <= q[0])
        {
 
            // Call stack with front of queue
            q.push(temp);
 
            // Recursive call for inserting a front
            // element of the queue to the last
            FrontToLast(q, qsize);
        }
        else
        {
 
            // Push front element into
            // last in a queue
            q.push(q[0]);
            q.shift();
 
            // Recursive call for pushing
            // element in a queue
            pushInQueue(q, temp, qsize - 1);
        }
    }
 
    // Function to sort the given
    // queue using recursion
    function sortQueue(q)
    {
 
        // Return if queue is empty
        if (q.length==0)
            return;
 
        // Get the front element which will
        // be stored in this variable
        // throughout the recursion stack
        let temp = q[0];
 
        // Remove the front element
        q.shift();
 
        // Recursive call
        sortQueue(q);
 
        // Push the current element into the queue
        // according to the sorting order
        pushInQueue(q, temp, q.length);
    }
     
    // Push elements to the queue
    let qu = [];
    qu.push(10);
    qu.push(7);
    qu.push(16);
    qu.push(9);
    qu.push(20);
    qu.push(5);
   
    // Sort the queue
    sortQueue(qu);
   
    // Print the elements of the
    // queue after sorting
    while (qu.length != 0)
    {
        document.write(qu[0] + " ");
        qu.shift();
    }
 
// This code is contributed by mukesh07.
</script>


Output: 

5 7 9 10 16 20

 

Time Complexity: The time complexity of this code is O(n^2), as the time taken to sort the queue is O(n^2) due to the use of recursion. The function pushInQueue() is called n times, and each time it calls the function FrontToLast() which takes O(n) time, resulting in a time complexity of O(n^2).
Auxiliary Space:  The Auxiliary Space of this code is O(n), as the maximum size of the queue will be n, where n is the number of elements in the queue.



Last Updated : 05 Jan, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads