Sort the array according to their cubes of each element
Given an array arr[] of N integers, the task is to sort the array according to the cubes of each element.
Examples:
Input: arr[] = { 4, -1, 0, -5, 6 }
Output: -5 -1 0 4 6Input: arr[] = { 12, 3, 0, 11 }
Output: 0 3 11 12
Approach: The idea is to use the Comparator function with an inbuilt sort function() to sort the array according to the cubes of its elements. Below is the comparator function used:
bool comparator_function(int a, int b) { x = pow(a, 3); y = pow(b, 3); return x < y; }
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Comparator function which returns // a^3 is less than b^3 bool cmp( int a, int b) { int x = pow (a, 3); int y = pow (b, 3); return x < y; } // Function to sort the cubes of array bool sortArr( int arr[], int n) { // Sort the array sort(arr, arr + n, cmp); // Print the array for ( int i = 0; i < n; i++) { cout << arr[i] << " " ; } } // Driver Code int main() { // Given array int arr[] = { 4, -1, 0, -5, 6 }; int n = sizeof (arr) / sizeof (arr[0]); // Function Call sortArr(arr, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Function to sort the cubes of array static void sortArr( int arr[], int n) { Integer[] ar = new Integer[n]; for ( int i = 0 ; i < n; i++) ar[i] = arr[i]; // Sort the array Arrays.sort(ar, new Comparator<Integer>() { public int compare(Integer a, Integer b) { int x = ( int )Math.pow(a, 3 ); int y = ( int )Math.pow(b, 3 ); return (x < y) ? - 1 : 1 ; } }); // Print the array for ( int i = 0 ; i < n; i++) { System.out.print(ar[i] + " " ); } } // Driver code public static void main(String[] args) { // Given array int arr[] = { 4 , - 1 , 0 , - 5 , 6 }; int n = arr.length; // Function Call sortArr(arr, n); } } // This code is contributed by offbeat |
Python3
# Python3 program for the above approach # Function to sort the cubes of array def sortArr(arr, n): # Make a list of tuples in # the form(cube of (num), num) arr = [(i * i * i, i) for i in arr]; # Sort the array according to # the their respective cubes arr.sort() # Print the array for i in range (n): print (arr[i][ 1 ], end = " " ); # Driver Code if __name__ = = "__main__" : # Given array arr = [ 4 , - 1 , 0 , - 5 , 6 ]; n = len (arr); # Function Call sortArr(arr, n); # This code is contributed by AnkitRai01 |
C#
// C# program for the above approach using System; using System.Collections; class compare : IComparer { // Call CaseInsensitiveComparer.Compare public int Compare(Object x, Object y) { return ( new CaseInsensitiveComparer()).Compare(x,y); } } class GFG{ // Function to sort the cubes of array static void sortArr( int []arr, int n) { int [] ar = new int [n]; for ( int i = 0; i < n; i++) ar[i] = arr[i]; IComparer cmp = new compare(); // Sort the array Array.Sort(ar, cmp); // Print the array for ( int i = 0; i < n; i++) { Console.Write(ar[i] + " " ); } } // Driver code public static void Main(String[] args) { // Given array int []arr = {4, -1, 0, -5, 6}; int n = arr.Length; // Function Call sortArr(arr, n); } } // This code is contributed by gauravrajput1 |
Javascript
<script> //Javascript implementation to check whether // K times of a element is present in // the array // Function to sort the cubes of array function sortArr(arr, n) { // Sort the array arr.sort( function ( a , b){ var x = Math.pow(a,3); var y = Math.pow(b,3); if (x > y) return 1; if (x < y) return -1; return 0; }); // Print the array for ( var i = 0; i < n; i++) { document.write(arr[i] + " " ); } } // Driver program to test above var arr = [ 4, -1, 0, -5, 6 ]; var n = arr.length; sortArr(arr, n); // This code is contributed by shivani. </script> |
Output:
-5 -1 0 4 6
Time Complexity: O(N*log N), where N is the number of elements in the array.
Space Complexity : O(1) , as it only uses a constant amount of extra memory to sort the array and print the result
Please Login to comment...