Sort rows or columns in Pandas Dataframe based on values

In this article, Let’s discuss how to Sort rows or columns in Pandas Dataframe based on values. Pandas sort_values() method sorts a data frame in Ascending or Descending order of passed Column. It’s different than the sorted Python function since it cannot sort a data frame and particular column cannot be selected.

Syntax: DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’)

Parameters: This method will take following parameters :
by: Single/List of column names to sort Data Frame by.
axis: 0 or ‘index’ for rows and 1 or ‘columns’ for Column.
ascending: Boolean value which sorts Data frame in ascending order if True.
inplace: Boolean value. Makes the changes in passed data frame itself if True.
kind: String which can have three inputs(‘quicksort’, ‘mergesort’ or ‘heapsort’) of the algorithm used to sort data frame.
na_position: Takes two string input ‘last’ or ‘first’ to set position of Null values. Default is ‘last’.

Return Type: Returns a sorted Data Frame with Same dimensions as of the function caller Data Frame.

Now, Let’s create a sample dataframe :



filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Name', 'Age'
                                           'Place', 'College'],
                        index =[ 'b', 'c', 'a', 'e', 'f',
                                'g', 'i', 'j', 'k', 'd'])
# show the dataframe
details

chevron_right


Output:
Dataframe

Example 1: Sort Dataframe rows based on a single column.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ankita', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Swapnil', 35, 'Mp', 'Geu'),
           ('Priya', 35, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Name', 'Age',
                                           'Place', 'College'],
                        index =[ 'b', 'c', 'a', 'e', 'f',
                                'g', 'i', 'j', 'k', 'd'])
  
# Sort the rows of dataframe by 'Name' column
rslt_df = details.sort_values(by = 'Name')
  
# show the resultant Dataframe
rslt_df

chevron_right


Output:
sorted dataframe - 1

Example 2: Sort Dataframe rows based on a multiple columns.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ananya', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Priya', 35, 'Mp', 'Geu'),
           ('Priya', 34, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Name', 'Age'
                                           'Place', 'College'],
                        index =[ 'b', 'c', 'a', 'e', 'f',
                                'g', 'i', 'j', 'k', 'd'])
  
# sort Dataframe rows based on a 'Name' & 'Age' columns
  
# if duplicate value is present in 'Name' column
# then sorting will be done according to 'Age' column
rslt_df = details.sort_values(by = ['Name', 'Age'])
  
# show the resultant Dataframe
rslt_df

chevron_right


Output:
sorted dataframe - 3

Example 3: Sort Dataframe rows based on columns in Descending Order.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ananya', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Priya', 35, 'Mp', 'Geu'),
           ('Priya', 34, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Name', 'Age',
                                           'Place', 'College'],
                        index =[ 'b', 'c', 'a', 'e', 'f'
                                'g', 'i', 'j', 'k', 'd'])
  
# sort Dataframe rows based on "Name' 
# column in Descending Order
rslt_df = details.sort_values(by = 'Name', ascending = False)
  
# show the resultant Dataframe
rslt_df

chevron_right


Output:
sorted dataframe  - 2

Example 4: Sort Dataframe rows based on a column in Place.



filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [('Ankit', 22, 'Up', 'Geu'),
           ('Ananya', 31, 'Delhi', 'Gehu'),
           ('Rahul', 16, 'Tokyo', 'Abes'),
           ('Simran', 41, 'Delhi', 'Gehu'),
           ('Shaurya', 33, 'Delhi', 'Geu'),
           ('Harshita', 35, 'Mumbai', 'Bhu' ),
           ('Priya', 35, 'Mp', 'Geu'),
           ('Priya', 34, 'Uk', 'Geu'),
           ('Jeet', 35, 'Guj', 'Gehu'),
           ('Ananya', 35, 'Up', 'Bhu')
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Name', 'Age',
                                           'Place', 'College'],
                        index =[ 'b', 'c', 'a', 'e', 'f',
                                'g', 'i', 'j', 'k', 'd'])
  
# Sort the rows of dataframe by  'Name' 
# column inplace
details.sort_values(by = 'Name', inplace = True)
  
# show the resultant Dataframe
details

chevron_right


Output:
sort dataframe

Let’s see another simple Dataframe on which we are able to sort columns based on rows.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [
           (75, 50, 60, 70),
           (75, 55, 65, 75),
           (75, 35, 45, 25),
           (75, 90, 60, 70),
           (76, 90, 70, 60),
           (90, 80, 70, 60),
           (65, 10, 30, 20)
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Hindi', 'Math'
                                           'Science', 'English'],
                        index = ['Ankit', 'Rahul', 'Aishwarya'
                                 'Shivangi', 'Priya', 'Swapnil',
                                 'Shaurya'])
# show the dataframe
details

chevron_right


Output:
dataframe

Example 1: Sort columns of a Dataframe based on a single row.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [
           (75, 50, 60, 70),
           (75, 55, 65, 75),
           (75, 35, 45, 25),
           (75, 90, 60, 70),
           (76, 90, 70, 60),
           (90, 80, 70, 60),
           (65, 10, 30, 20)
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Hindi', 'Math'
                                           'Science', 'English'],
                        index = ['Ankit', 'Rahul', 'Aishwarya'
                                 'Shivangi', 'Priya', 'Swapnil',
                                 'Shaurya'])
  
# sort columns of a Dataframe based 
# on a 'Shivangi' row
rslt_df = details.sort_values(by = 'Shivangi', axis = 1)
  
# show the dataframe
rslt_df

chevron_right


Output:
sorted dataframe

Example 2: Sort columns of a Dataframe in Descending Order based on a single row.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [
           (75, 50, 60, 70),
           (75, 55, 65, 75),
           (75, 35, 45, 25),
           (75, 90, 60, 70),
           (76, 90, 70, 60),
           (90, 80, 70, 60),
           (65, 10, 30, 20)
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Hindi', 'Math'
                                           'Science', 'English'],
                        index = ['Ankit', 'Rahul', 'Aishwarya'
                                 'Shivangi', 'Priya', 'Swapnil',
                                 'Shaurya'])
  
# Sort columns of a dataframe in descending order 
# based on a 'Shivangi' row 
rslt_df = details.sort_values(by = 'Shivangi', axis = 1, ascending = False)
  
rslt_df

chevron_right


Output:
sorted dataframe

Example 3: Sort columns of a Dataframe based on a multiple rows.

filter_none

edit
close

play_arrow

link
brightness_4
code

# import pandas library as pd
import pandas as pd
  
# List of Tuples
students = [
           (75, 50, 60, 70),
           (75, 55, 65, 75),
           (75, 35, 45, 25),
           (75, 90, 60, 70),
           (76, 90, 70, 60),
           (90, 80, 70, 60),
           (65, 10, 30, 20)
            ]
  
# Create a DataFrame object from
# list of tuples with columns
# and indices.
details = pd.DataFrame(students, columns =['Hindi', 'Math'
                                           'Science', 'English'],
                        index = ['Ankit', 'Rahul', 'Aishwarya'
                                 'Shivangi', 'Priya', 'Swapnil',
                                 'Shaurya'])
  
# sort Dataframe columns based on a 'Shivangi' & 'Priya' rows
  
# if duplicate value is present in 'Shivangi'  row
# then sorting will be done according to 'Priya' row
rslt_df = details.sort_values(by = ['Shivangi', 'Priya'], axis = 1)
  
rslt_df

chevron_right


Output:

sorted dataframe




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.