Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sort numbers stored on different machines

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given N machines. Each machine contains some numbers in sorted form. But the amount of numbers, each machine has is not fixed. Output the numbers from all the machine in sorted non-decreasing form. 
Example:

Machine M1 contains 3 numbers: {30, 40, 50}
Machine M2 contains 2 numbers: {35, 45} 
Machine M3 contains 5 numbers: {10, 60, 70, 80, 100}

Output: {10, 30, 35, 40, 45, 50, 60, 70, 80, 100}

Representation of stream of numbers on each machine is considered as a linked list. A Min Heap can be used to print all numbers in sorted order. Following is the detailed process

  1. Store the head pointers of the linked lists in a minHeap of size N where N is a number of machines. 
  2. Extract the minimum item from the minHeap. Update the minHeap by replacing the head of the minHeap with the next number from the linked list or by replacing the head of the minHeap with the last number in the minHeap followed by decreasing the size of heap by 1. 
  3. Repeat the above step 2 until heap is not empty. Below is C++ implementation of the above approach. 

Implementation:

CPP




// A program to take numbers from different machines and print them in sorted order
#include <stdio.h>
 
// A Linked List node
struct ListNode
{
 int data;
 struct ListNode* next;
};
 
// A Min Heap Node
struct MinHeapNode
{
 ListNode* head;
};
 
// A Min Heao (Collection of Min Heap nodes)
struct MinHeap
{
 int count;
 int capacity;
 MinHeapNode* array;
};
 
// A function to create a Min Heap of given capacity
MinHeap* createMinHeap( int capacity )
{
 MinHeap* minHeap = new MinHeap;
 minHeap->capacity = capacity;
 minHeap->count = 0;
 minHeap->array = new MinHeapNode [minHeap->capacity];
 return minHeap;
}
 
/* A utility function to insert a new node at the beginning
of linked list */
void push (ListNode** head_ref, int new_data)
{
 /* allocate node */
 ListNode* new_node = new ListNode;
 
 /* put in the data */
 new_node->data = new_data;
 
 /* link the old list off the new node */
 new_node->next = (*head_ref);
 
 /* move the head to point to the new node */
 (*head_ref) = new_node;
}
 
// A utility function to swap two min heap nodes. This function
// is needed in minHeapify
void swap( MinHeapNode* a, MinHeapNode* b )
{
 MinHeapNode temp = *a;
 *a = *b;
 *b = temp;
}
 
// The standard minHeapify function.
void minHeapify( MinHeap* minHeap, int idx )
{
 int left, right, smallest;
 left = 2 * idx + 1;
 right = 2 * idx + 2;
 smallest = idx;
 
 if ( left < minHeap->count &&
  minHeap->array[left].head->data <
  minHeap->array[smallest].head->data
 )
  smallest = left;
 
 if ( right < minHeap->count &&
  minHeap->array[right].head->data <
  minHeap->array[smallest].head->data
 )
  smallest = right;
 
 if( smallest != idx )
 {
  swap( &minHeap->array[smallest], &minHeap->array[idx] );
  minHeapify( minHeap, smallest );
 }
}
 
// A utility function to check whether a Min Heap is empty or not
int isEmpty( MinHeap* minHeap )
{
 return (minHeap->count == 0);
}
 
// A standard function to build a heap
void buildMinHeap( MinHeap* minHeap )
{
 int i, n;
 n = minHeap->count - 1;
 for( i = (n - 1) / 2; i >= 0; --i )
  minHeapify( minHeap, i );
}
 
// This function inserts array elements to heap and then calls
// buildHeap for heap property among nodes
void populateMinHeap( MinHeap* minHeap, ListNode* *array, int n )
{
 for( int i = 0; i < n; ++i )
  minHeap->array[ minHeap->count++ ].head = array[i];
 
 buildMinHeap( minHeap );
}
 
// Return minimum element from all linked lists
ListNode* extractMin( MinHeap* minHeap )
{
 if( isEmpty( minHeap ) )
  return NULL;
 
 // The root of heap will have minimum value
 MinHeapNode temp = minHeap->array[0];
 
 // Replace root either with next node of the same list.
 if( temp.head->next )
  minHeap->array[0].head = temp.head->next;
 else // If list empty, then reduce heap size
 {
  minHeap->array[0] = minHeap->array[ minHeap->count - 1 ];
  --minHeap->count;
 }
 
 minHeapify( minHeap, 0 );
 return temp.head;
}
 
// The main function that takes an array of lists from N machines
// and generates the sorted output
void externalSort( ListNode *array[], int N )
{
 // Create a min heap of size equal to number of machines
 MinHeap* minHeap = createMinHeap( N );
 
 // populate first item from all machines
 populateMinHeap( minHeap, array, N );
 
 while ( !isEmpty( minHeap ) )
 {
  ListNode* temp = extractMin( minHeap );
  printf( "%d ",temp->data );
 }
}
 
// Driver program to test above functions
int main()
{
 int N = 3; // Number of machines
 
 // an array of pointers storing the head nodes of the linked lists
 ListNode *array[N];
 
 // Create a Linked List 30->40->50 for first machine
 array[0] = NULL;
 push (&array[0], 50);
 push (&array[0], 40);
 push (&array[0], 30);
 
 // Create a Linked List 35->45 for second machine
 array[1] = NULL;
 push (&array[1], 45);
 push (&array[1], 35);
 
 // Create Linked List 10->60->70->80 for third machine
 array[2] = NULL;
 push (&array[2], 100);
 push (&array[2], 80);
 push (&array[2], 70);
 push (&array[2], 60);
 push (&array[2], 10);
 
 // Sort all elements
 externalSort( array, N );
 
 return 0;
}

Python3




# A program to take numbers from different machines and print them in sorted order
 
# A Linked List node
class ListNode:
    def __init__(self, val=0, next=None):
        self.val = val
        self.next = next
 
# A Min Heao (Collection of Min Heap nodes)
class MinHeap:
    def __init__(self, capacity):
        self.count = 0
        self.capacity = capacity
        self.array = []
 
# A utility function to insert a new node at the beginning of linked list
def push(head_ref, new_data):
    new_node = ListNode(new_data)
    new_node.next = head_ref
    head_ref = new_node
    return head_ref
 
# A utility function to swap two min heap nodes. This function
# is needed in minHeapify
def swap(a, b):
    temp = a
    a = b
    b = temp
    return a, b
 
# The standard minHeapify function.
def min_heapify(min_heap, idx):
    left = 2 * idx + 1
    right = 2 * idx + 2
    smallest = idx
 
    if (left < min_heap.count and
            min_heap.array[left][0].val < min_heap.array[smallest][0].val):
        smallest = left
    if (right < min_heap.count and
            min_heap.array[right][0].val < min_heap.array[smallest][0].val):
        smallest = right
    if smallest != idx:
        min_heap.array[smallest], min_heap.array[idx] = swap(
            min_heap.array[smallest], min_heap.array[idx])
        min_heapify(min_heap, smallest)
 
# A utility function to check whether a Min Heap is empty or not
 
 
def is_empty(min_heap):
    return min_heap.count == 0
 
# A standard function to build a heap
def build_min_heap(min_heap):
    n = min_heap.count - 1
    for i in range((n - 1) // 2, -1, -1):
        min_heapify(min_heap, i)
 
# This function inserts array elements to heap and then calls
# buildHeap for heap property among nodes
def populate_min_heap(min_heap, array, n):
    for i in range(n):
        min_heap.array.append((array[i], i))
        min_heap.count += 1
    build_min_heap(min_heap)
 
# Return minimum element from all linked lists
def extract_min(min_heap):
    if is_empty(min_heap):
        return None
    temp = min_heap.array[0][0]
 
    if temp.next is not None:
        min_heap.array[0] = (temp.next, min_heap.array[0][1])
    else:
        min_heap.array[0] = min_heap.array[min_heap.count - 1]
        min_heap.count -= 1
 
    min_heapify(min_heap, 0)
    return temp
 
# The main function that takes an array of lists from N machines
# and generates the sorted output
def external_sort(array, n):
     # Create a min heap of size equal to number of machines
    min_heap = MinHeap(n)
 
    populate_min_heap(min_heap, array, n)
 
    while not is_empty(min_heap):
        temp = extract_min(min_heap)
        print(temp.val, end=" ")
 
 
# Driver program to test above functions
if __name__ == '__main__':
    N = 3  # Number of machines
    array = [None] * N
 
    # an array of pointers storing the head nodes of the linked lists
    array[0] = None
    array[0] = push(array[0], 50)
    array[0] = push(array[0], 40)
    array[0] = push(array[0], 30)
 
    # Create a Linked List 35->45 for second machine
    array[1] = None
    array[1] = push(array[1], 45)
    array[1] = push(array[1], 35)
 
    # Create Linked List 10->60->70->80 for third machine
 
    array[2] = None
    array[2] = push(array[2], 100)
    array[2] = push(array[2], 80)
    array[2] = push(array[2], 70)
    array[2] = push(array[2], 60)
    array[2] = push(array[2], 10)
 
    external_sort(array, N)

C#




using System;
 
// define a singly linked list node
public class ListNode {
   
      // data stored in the node
    public int data;   
   
      // reference to the next node in the linked list
    public ListNode next;    
}
 
// define a node for the heap,
// that holds a reference to a linked list node
public class MinHeapNode {
   
      // reference to a linked list node
    public ListNode head;    
}
 
// define the heap data structure
public class MinHeap {
   
      // number of nodes in the heap
    public int count;   
   
      // maximum number of nodes the heap can hold
    public int capacity; 
       
      // an array of MinHeapNode objects,
      // each containing a linked list node
    public MinHeapNode[] array;
}
 
 
public class ExternalSort {
    static MinHeap createMinHeap(int capacity) {
        MinHeap minHeap = new MinHeap();
        minHeap.capacity = capacity;
        minHeap.count = 0;
        minHeap.array = new MinHeapNode[minHeap.capacity];
        return minHeap;
    }
 
      // define a static method to add a new ListNode object
      // with specified data value to the beginning of a linked list
    static void push(ref ListNode head_ref, int new_data) {
       
        // create a new ListNode object
        ListNode new_node = new ListNode();
       
        // set the data value and next reference for the new ListNode object
        new_node.data = new_data;
        new_node.next = head_ref;
       
        // set the head reference for the linked list to the new ListNode object
        head_ref = new_node;
    }
 
    static void swap(ref MinHeapNode a, ref MinHeapNode b) {
        MinHeapNode temp = a;
        a = b;
        b = temp;
    }
   
   
    // define a static method to maintain the min heap property
      // at a given index in a MinHeap object's array
    static void minHeapify(MinHeap minHeap, int idx) {
        int left, right, smallest;
        left = 2 * idx + 1;
        right = 2 * idx + 2;
        smallest = idx;
 
        if (left < minHeap.count &&
            minHeap.array[left].head.data <
            minHeap.array[smallest].head.data) {
            smallest = left;
        }
 
        if (right < minHeap.count &&
            minHeap.array[right].head.data <
            minHeap.array[smallest].head.data) {
            smallest = right;
        }
 
        if (smallest != idx) {
            swap(ref minHeap.array[smallest], ref minHeap.array[idx]);
            minHeapify(minHeap, smallest);
        }
    }
 
      // A utility function to check whether a Min Heap is empty or not
    static int isEmpty(MinHeap minHeap) {
        return (minHeap.count == 0) ? 1 : 0;
    }
 
      // A standard function to build a heap
    static void buildMinHeap(MinHeap minHeap) {
        int i, n;
        n = minHeap.count - 1;
        for (i = (n - 1) / 2; i >= 0; --i) {
            minHeapify(minHeap, i);
        }
    }
 
      // This function inserts array elements to heap and then calls
    // buildHeap for heap property among nodes
    static void populateMinHeap(MinHeap minHeap, ListNode[] array, int n) {
        for (int i = 0; i < n; ++i) {
            MinHeapNode node = new MinHeapNode();
            node.head = array[i];
            minHeap.array[minHeap.count++] = node;
        }
        buildMinHeap(minHeap);
    }
 
 
      // Return minimum element from all linked lists
    static ListNode extractMin(MinHeap minHeap) {
        if (isEmpty(minHeap) == 1) {
            return null;
        }
 
        MinHeapNode temp = minHeap.array[0];
        ListNode node = temp.head;
 
        if (temp.head.next == null) {
            minHeap.array[0] = minHeap.array[minHeap.count - 1];
            --minHeap.count;
        }
        else {
            minHeap.array[0].head = temp.head.next;
        }
 
        minHeapify(minHeap, 0);
        return node;
    }
 
 
      // The main function that takes an array of lists from N machines
    // and generates the sorted output
    static void externalSort(ListNode[] array, int N) {
        MinHeap minHeap = createMinHeap(N);
        populateMinHeap(minHeap, array, N);
 
        while (isEmpty(minHeap) != 1) {
            ListNode temp = extractMin(minHeap);
            Console.Write(temp.data + " ");
        }
    }
 
      // Driver function
    static void Main()
    {
        int N = 3; // Number of machines
 
        // an array of pointers storing the head nodes of the linked lists
        ListNode[] array = new ListNode[N];
 
        // Create a Linked List 30->40->50 for first machine
        array[0] = null;
        push(ref array[0], 50);
        push(ref array[0], 40);
        push(ref array[0], 30);
 
        // Create a Linked List 35->45 for second machine
        array[1] = null;
        push(ref array[1], 45);
        push(ref array[1], 35);
 
        // Create Linked List 10->60->70->80 for third machine
        array[2] = null;
        push(ref array[2], 100);
        push(ref array[2], 80);
        push(ref array[2], 70);
        push(ref array[2], 60);
        push(ref array[2], 10);
 
        // Sort all elements
        externalSort(array, N);
    }
}
 
// This code is contributed by amit_mangal_

Javascript




// A JavaScript program to take numbers from different machines and print them in sorted order
 
// A Linked List node
class ListNode {
constructor(val = 0, next = null) {
this.val = val;
this.next = next;
}
}
 
// A Min Heap (Collection of Min Heap nodes)
class MinHeap {
constructor(capacity) {
this.count = 0;
this.capacity = capacity;
this.array = [];
}
}
 
// A utility function to insert a new node at the beginning of linked list
function push(head_ref, new_data) {
  /* allocate node */
const new_node = new ListNode(new_data);
/* link the old list off the new node */
new_node.next = head_ref;
/* move the head to point to the new node */
head_ref = new_node;
return head_ref;
}
 
// A utility function to swap two min heap nodes. This function
// is needed in minHeapify
function swap(a, b) {
const temp = a;
a = b;
b = temp;
return [a, b];
}
 
// The standard minHeapify function.
function min_heapify(min_heap, idx) {
const left = 2 * idx + 1;
const right = 2 * idx + 2;
let smallest = idx;
 
if (
left < min_heap.count &&
min_heap.array[left][0].val < min_heap.array[smallest][0].val
) {
smallest = left;
}
if (
right < min_heap.count &&
min_heap.array[right][0].val < min_heap.array[smallest][0].val
) {
smallest = right;
}
if (smallest !== idx) {
[min_heap.array[smallest], min_heap.array[idx]] = swap(
min_heap.array[smallest],
min_heap.array[idx]
);
min_heapify(min_heap, smallest);
}
}
 
// A utility function to check whether a Min Heap is empty or not
function is_empty(min_heap) {
return min_heap.count === 0;
}
 
// A standard function to build a heap
function build_min_heap(min_heap) {
const n = min_heap.count - 1;
for (let i = Math.floor((n - 1) / 2); i >= 0; i--) {
min_heapify(min_heap, i);
}
}
 
// This function inserts array elements to heap and then calls
// buildHeap for heap property among nodes
function populate_min_heap(min_heap, array, n) {
for (let i = 0; i < n; i++) {
min_heap.array.push([array[i], i]);
min_heap.count += 1;
}
build_min_heap(min_heap);
}
 
// Return minimum element from all linked lists
function extract_min(min_heap) {
if (is_empty(min_heap)) {
return null;
}
const temp = min_heap.array[0][0];
 
if (temp.next !== null) {
min_heap.array[0] = [temp.next, min_heap.array[0][1]];
} else {
min_heap.array[0] = min_heap.array[min_heap.count - 1];
min_heap.count -= 1;
}
 
min_heapify(min_heap, 0);
return temp;
}
 
// The main function that takes an array of lists from N machines
// and generates the sorted output
function external_sort(array, n) {
  // Create a min heap of size equal to number of machines
  const min_heap = new MinHeap(n);
 
  populate_min_heap(min_heap, array, n);
 
  let sortedList = '';
  while (!is_empty(min_heap)) {
    const temp = extract_min(min_heap);
    sortedList += `${temp.val} `;
  }
  console.log(sortedList.trim());
}
 
 
// Driver program to test above functions
const N = 3; // Number of machines
const array = new Array(N);
 
// an array of pointers storing the head nodes of the linked lists
array[0] = null;
array[0] = push(array[0], 50);
array[0] = push(array[0], 40);
array[0] = push(array[0], 30);
 
// Create a Linked List 35->45 for second machine
array[1] = null;
array[1] = push(array[1], 45);
array[1] = push(array[1], 35);
 
// Create Linked List 10->60->70->80 for third machine
array[2] = null;
array[2] = push(array[2], 100);
array[2] = push(array[2], 80);
array[2] = push(array[2], 70);
array[2] = push(array[2], 60);
array[2] = push(array[2], 10);
 
external_sort(array, N);

Output

10 30 35 40 45 50 60 70 80 100 

Time complexity: O(N) for min heap
Auxiliary Space: O(N)

Approach : Using DP

This code uses a priority queue (min heap) to efficiently merge the sorted lists from different machines. The mergeLists function takes a vector of linked lists and merges them into a single sorted linked list using a min heap. The externalSort function converts the array of linked lists into a vector and then calls mergeLists to obtain the sorted list, which is then printed.

Note that this implementation assumes ascending order sorting. If you want to sort in descending order, you can modify the CompareNode struct and change the comparison operator in the operator() function accordingly.

C++




#include <iostream>
#include <vector>
#include <queue>
 
using namespace std;
 
struct ListNode {
    int data;
    ListNode* next;
};
 
struct CompareNode {
    bool operator()(const ListNode* a, const ListNode* b) {
        return a->data > b->data;
    }
};
 
ListNode* createNode(int data) {
    ListNode* newNode = new ListNode;
    newNode->data = data;
    newNode->next = nullptr;
    return newNode;
}
 
void push(ListNode** head, int data) {
    if (*head == nullptr) {
        *head = createNode(data);
    } else {
        ListNode* newNode = createNode(data);
        newNode->next = *head;
        *head = newNode;
    }
}
 
void printList(ListNode* head) {
    while (head != nullptr) {
        cout << head->data << " ";
        head = head->next;
    }
}
 
ListNode* mergeLists(vector<ListNode*>& lists) {
    ListNode* dummy = createNode(0);
    ListNode* tail = dummy;
 
    priority_queue<ListNode*, vector<ListNode*>, CompareNode> minHeap;
 
    for (ListNode* list : lists) {
        if (list != nullptr) {
            minHeap.push(list);
        }
    }
 
    while (!minHeap.empty()) {
        ListNode* node = minHeap.top();
        minHeap.pop();
 
        tail->next = node;
        tail = tail->next;
 
        if (node->next != nullptr) {
            minHeap.push(node->next);
        }
    }
 
    return dummy->next;
}
 
void externalSort(ListNode* array[], int N) {
    vector<ListNode*> lists(array, array + N);
    ListNode* sortedList = mergeLists(lists);
    printList(sortedList);
}
 
int main() {
    int N = 3; // Number of machines
 
    ListNode* array[N];
 
    array[0] = nullptr;
    push(&array[0], 50);
    push(&array[0], 40);
    push(&array[0], 30);
 
    array[1] = nullptr;
    push(&array[1], 45);
    push(&array[1], 35);
 
    array[2] = nullptr;
    push(&array[2], 100);
    push(&array[2], 80);
    push(&array[2], 70);
    push(&array[2], 60);
    push(&array[2], 10);
 
    externalSort(array, N);
 
    return 0;
}

Output:

10 30 35 40 45 50 60 70 80 100 

space complexity: O(N + K)

time complexity: O(N + K log N)


My Personal Notes arrow_drop_up
Last Updated : 20 May, 2023
Like Article
Save Article
Similar Reads
Related Tutorials