Related Articles

Related Articles

Sort Matrix in alternating ascending and descending order rowwise
  • Last Updated : 17 Aug, 2020

Given an N x N matrix, our task is to print the row of the matrix in ascending and descending order alternatively.
Examples: 
 

Input: 
5 7 3 4 
9 5 8 2 
6 3 8 1 
5 8 9 3 
Output: 
3 4 5 7 
9 8 5 2 
1 3 6 8 
9 8 5 3 
Explanation: 
Here the first row is sorted in ascending order, second row sorted in descending order, third row sorted in ascending order and so on.
Input: 
7 3 4 
3 8 2 
3 6 1 
Output: 
3 4 7 
8 3 2 
1 3 6 
Explanation: 
Here the first row is sorted in ascending order, second row sorted in descending order, third row sorted in ascending order. 
 

 

Approach to solve
To solve the problem mentioned above we iterate 0 to N and check if the ith row is even or odd, if it is even then we sort the row in ascending order otherwise sort the ith row in descending order. Return the matrix after N iterations.
Below is the implementation of the above approach: 
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to print row of
// matrix in ascending or descending
// order alternatively
 
#include <stdio.h>
#define N 4
 
void func(int a[][N])
{
 
    // Iterate matrix rowwise
    for (int i = 0; i < N; i++) {
 
        // Sort even rows in ascending order
        if (i % 2 == 0) {
            for (int j = 0; j < N; j++) {
                for (int k = j + 1; k < N; ++k) {
 
                    // compare adjacent elements
                    if (a[i][j] > a[i][k]) {
 
                        // swap adjacent element
                        int temp = a[i][j];
                        a[i][j] = a[i][k];
                        a[i][k] = temp;
                    }
                }
            }
        }
 
        // Sort even rows in descending order
        else {
            for (int j = 0; j < N; j++) {
                for (int k = j + 1; k < N; ++k) {
 
                    // compare adjacent elements
                    if (a[i][j] < a[i][k]) {
 
                        // swap adjacent element
                        int temp = a[i][j];
                        a[i][j] = a[i][k];
                        a[i][k] = temp;
                    }
                }
            }
        }
    }
 
    // Printing the final Output
    for (int i = 0; i < N; i++) {
        for (int j = 0; j < N; j++) {
            printf("%d ", a[i][j]);
        }
        printf("\n");
    }
}
 
// Driver code
int main()
{
 
    int a[N][N] = {
        { 5, 7, 3, 4 },
        { 9, 5, 8, 2 },
        { 6, 3, 8, 1 },
        { 5, 8, 9, 3 }
    };
 
    func(a);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to print row of
// matrix in ascending or descending
// order alternatively
class GFG{
     
static int N = 4;
 
static void func(int a[][])
{
    int i, j, k;
     
    // Iterate matrix rowwise
    for(i = 0; i < N; i++)
    {
         
       // Sort even rows in ascending order
       if (i % 2 == 0)
       {
           for(j = 0; j < N; j++)
           {
              for(k = j + 1; k < N; ++k)
              {
                   
                 // Compare adjacent elements
                 if (a[i][j] > a[i][k])
                 {
                      
                     // Swap adjacent element
                     int temp = a[i][j];
                     a[i][j] = a[i][k];
                     a[i][k] = temp;
                 }
              }
           }
       }
        
       // Sort even rows in descending order
       else
       {
           for(j = 0; j < N; j++)
           {
              for(k = j + 1; k < N; ++k)
              {
                   
                 // Compare adjacent elements
                 if (a[i][j] < a[i][k])
                 {
                      
                     // Swap adjacent element
                     int temp = a[i][j];
                     a[i][j] = a[i][k];
                     a[i][k] = temp;
                 }
              }
           }
       }
    }
     
    // Printing the final Output
    for(i = 0; i < N; i++)
    {
       for(j = 0; j < N; j++)
       {
          System.out.print(a[i][j] + " ");
       }
       System.out.print("\n");
    }
}
 
// Driver code
public static void main (String []args)
{
 
    int a[][] = { { 5, 7, 3, 4 },
                  { 9, 5, 8, 2 },
                  { 6, 3, 8, 1 },
                  { 5, 8, 9, 3 } };
 
    func(a);
}
}
 
// This code is contributed by chitranayal

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to print row of
# matrix in ascending or descending
# order alternatively
N = 4
 
def func(a):
     
    # Iterate matrix rowwise
    for i in range(N):
 
        # Sort even rows in ascending order
        if i % 2 == 0:
            for j in range(N):
                for k in range(j + 1, N):
                     
                    # Compare adjacent elements
                    if a[i][j] > a[i][k]:
                         
                        # Swap adjacent element
                        temp = a[i][j]
                        a[i][j] = a[i][k]
                        a[i][k] = temp
 
        # Sort even rows in descending order
        else :
            for j in range(N):
                for k in range(j + 1, N):
 
                    # Compare adjacent elements
                    if a[i][j] < a[i][k]:
 
                        # Swap adjacent element
                        temp = a[i][j]
                        a[i][j] = a[i][k]
                        a[i][k] = temp
 
    # Printing the final output
    for i in range(N):
        for j in range(N):
            print(a[i][j], end = " ")
        print()
         
# Driver code
if __name__ == '__main__':
 
    a = [ [ 5, 7, 3, 4 ],
          [ 9, 5, 8, 2 ],
          [ 6, 3, 8, 1 ],
          [ 5, 8, 9, 3 ] ]
           
    func(a)
 
# This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to print row of
// matrix in ascending or descending
// order alternatively
using System;
class GFG{
     
static int N = 4;
 
static void func(int[,]a)
{
    int i, j, k;
     
    // Iterate matrix rowwise
    for(i = 0; i < N; i++)
    {
         
       // Sort even rows in ascending order
       if (i % 2 == 0)
       {
           for(j = 0; j < N; j++)
           {
              for(k = j + 1; k < N; ++k)
              {
                   
                 // Compare adjacent elements
                 if (a[i, j] > a[i, k])
                 {
                      
                     // Swap adjacent element
                     int temp = a[i, j];
                     a[i, j] = a[i, k];
                     a[i, k] = temp;
                 }
              }
           }
       }
        
       // Sort even rows in descending order
       else
       {
           for(j = 0; j < N; j++)
           {
              for(k = j + 1; k < N; ++k)
              {
                   
                 // Compare adjacent elements
                 if (a[i, j] < a[i, k])
                 {
                      
                     // Swap adjacent element
                     int temp = a[i, j];
                     a[i, j] = a[i, k];
                     a[i, k] = temp;
                 }
              }
           }
       }
    }
     
    // Printing the readonly Output
    for(i = 0; i < N; i++)
    {
       for(j = 0; j < N; j++)
       {
          Console.Write(a[i, j] + " ");
       }
       Console.Write("\n");
    }
}
 
// Driver code
public static void Main(String []args)
{
 
    int[,]a = { { 5, 7, 3, 4 },
                { 9, 5, 8, 2 },
                { 6, 3, 8, 1 },
                { 5, 8, 9, 3 } };
 
    func(a);
}
}
 
// This code is contributed by Princi Singh

chevron_right


Output: 

3 4 5 7 
9 8 5 2 
1 3 6 8 
9 8 5 3


 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :