Given an array of both positive and negative integers ‘arr[]’ which are sorted. The task is to sort the square of the numbers of the Array.
Examples:
Input : arr[] = {-6, -3, -1, 2, 4, 5} Output : 1, 4, 9, 16, 25, 36 Input : arr[] = {-5, -4, -2, 0, 1} Output : 0, 1, 4, 16, 25
Simple solution is to first convert each array element into its square and then apply any “O(nlogn)” sorting algorithm to sort the array elements.
Below is the implementation of the above idea
C++
// C++ program to Sort square of the numbers // of the array #include <bits/stdc++.h> using namespace std; // Function to sort an square array void sortSquares( int arr[], int n) { // First convert each array elements // into its square for ( int i = 0; i < n; i++) arr[i] = arr[i] * arr[i]; // Sort an array using "sort STL function " sort(arr, arr + n); } // Driver program to test above function int main() { int arr[] = { -6, -3, -1, 2, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Before sort " << endl; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; sortSquares(arr, n); cout << "\nAfter Sort " << endl; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; return 0; } |
Java
// Java program to Sort square of the numbers // of the array import java.util.*; import java.io.*; class GFG { // Function to sort an square array public static void sortSquares( int arr[]) { int n = arr.length; // First convert each array elements // into its square for ( int i = 0 ; i < n; i++) arr[i] = arr[i] * arr[i]; // Sort an array using "inbuild sort function" // in Arrays class. Arrays.sort(arr); } // Driver program to test above function public static void main(String[] args) { int arr[] = { - 6 , - 3 , - 1 , 2 , 4 , 5 }; int n = arr.length; System.out.println( "Before sort " ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); sortSquares(arr); System.out.println( "" ); System.out.println( "After Sort " ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } } |
Python3
# Python program to Sort square # of the numbers of the array # Function to sort an square array def sortSquare(arr, n): # First convert each array # elements into its square for i in range (n): arr[i] = arr[i] * arr[i] arr.sort() # Driver code arr = [ - 6 , - 3 , - 1 , 2 , 4 , 5 ] n = len (arr) print ( "Before sort" ) for i in range (n): print (arr[i], end = " " ) print ( "\n" ) sortSquare(arr, n) print ( "After sort" ) for i in range (n): print (arr[i], end = " " ) # This code is contributed by # Shrikant13 |
C#
// C# program to Sort square // of the numbers of the array using System; class GFG { // Function to sort // an square array public static void sortSquares( int [] arr) { int n = arr.Length; // First convert each array // elements into its square for ( int i = 0; i < n; i++) arr[i] = arr[i] * arr[i]; // Sort an array using // "inbuild sort function" // in Arrays class. Array.Sort(arr); } // Driver Code public static void Main() { int [] arr = { -6, -3, -1, 2, 4, 5 }; int n = arr.Length; Console.WriteLine( "Before sort " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); sortSquares(arr); Console.WriteLine( "" ); Console.WriteLine( "After Sort " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by anuj_67. |
Output:
Before sort -6 -3 -1 2 4 5 After Sort 1 4 9 16 25 36
Time complexity: O(n log n)
Efficient solution is based on the fact that the given array is already sorted. We do the following two steps.
- Divide the array into two-part “Negative and positive “.
- Use merge function to merge two sorted arrays into a single sorted array.
Below is the implementation of the above idea.
C++
// C++ program to Sort square of the numbers of the array #include <bits/stdc++.h> using namespace std; // function to sort array after doing squares of elements void sortSquares( int arr[], int n) { // first dived array into part negative and positive int K = 0; for (K = 0; K < n; K++) if (arr[K] >= 0) break ; // Now do the same process that we learn // in merge sort to merge to two sorted array // here both two half are sorted and we traverse // first half in reverse meaner because // first half contain negative element int i = K - 1; // Initial index of first half int j = K; // Initial index of second half int ind = 0; // Initial index of temp array // store sorted array int temp[n]; while (i >= 0 && j < n) { if (arr[i] * arr[i] < arr[j] * arr[j]) { temp[ind] = arr[i] * arr[i]; i--; } else { temp[ind] = arr[j] * arr[j]; j++; } ind++; } /* Copy the remaining elements of first half */ while (i >= 0) { temp[ind] = arr[i] * arr[i]; i--; ind++; } /* Copy the remaining elements of second half */ while (j < n) { temp[ind] = arr[j] * arr[j]; j++; ind++; } // copy 'temp' array into original array for ( int i = 0; i < n; i++) arr[i] = temp[i]; } // Driver program to test above function int main() { int arr[] = { -6, -3, -1, 2, 4, 5 }; int n = sizeof (arr) / sizeof (arr[0]); cout << "Before sort " << endl; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; sortSquares(arr, n); cout << "\nAfter Sort " << endl; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; return 0; } |
Java
// Java program to Sort square of the numbers // of the array import java.util.*; import java.io.*; class GFG { // Function to sort an square array public static void sortSquares( int arr[]) { int n = arr.length; // first dived array into part negative and positive int k; for (k = 0 ; k < n; k++) { if (arr[k] >= 0 ) break ; } // Now do the same process that we learn // in merge sort to merge to two sorted array // here both two half are sorted and we traverse // first half in reverse meaner because // first half contain negative element int i = k - 1 ; // Initial index of first half int j = k; // Initial index of second half int ind = 0 ; // Initial index of temp array int [] temp = new int [n]; while (i >= 0 && j < n) { if (arr[i] * arr[i] < arr[j] * arr[j]) { temp[ind] = arr[i] * arr[i]; i--; } else { temp[ind] = arr[j] * arr[j]; j++; } ind++; } while (i >= 0 ) { temp[ind++] = arr[i] * arr[i]; i--; } while (j < n) { temp[ind++] = arr[j] * arr[j]; j++; } // copy 'temp' array into original array for ( int x = 0 ; x < n; x++) arr[x] = temp[x]; } // Driver program to test above function public static void main(String[] args) { int arr[] = { - 6 , - 3 , - 1 , 2 , 4 , 5 }; int n = arr.length; System.out.println( "Before sort " ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); sortSquares(arr); System.out.println( "" ); System.out.println( "After Sort " ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } } |
Python3
# Python3 program to Sort square of the numbers of the array # function to sort array after doing squares of elements def sortSquares(arr, n): # first dived array into part negative and positive K = 0 for K in range (n): if (arr[K] > = 0 ): break # Now do the same process that we learn # in merge sort to merge to two sorted array # here both two half are sorted and we traverse # first half in reverse meaner because # first half contain negative element i = K - 1 # Initial index of first half j = K # Initial index of second half ind = 0 # Initial index of temp array # store sorted array temp = [ 0 ] * n while (i > = 0 and j < n): if (arr[i] * arr[i] < arr[j] * arr[j]): temp[ind] = arr[i] * arr[i] i - = 1 else : temp[ind] = arr[j] * arr[j] j + = 1 ind + = 1 ''' Copy the remaining elements of first half ''' while (i > = 0 ): temp[ind] = arr[i] * arr[i] i - = 1 ind + = 1 ''' Copy the remaining elements of second half ''' while (j < n): temp[ind] = arr[j] * arr[j] j + = 1 ind + = 1 # copy 'temp' array into original array for i in range (n): arr[i] = temp[i] # Driver code arr = [ - 6 , - 3 , - 1 , 2 , 4 , 5 ] n = len (arr) print ( "Before sort " ) for i in range (n): print (arr[i], end = " " ) sortSquares(arr, n) print ( "\nAfter Sort " ) for i in range (n): print (arr[i], end = " " ) # This code is contributed by shubhamsingh10 |
C#
// C# program to Sort square of the numbers // of the array using System; class GFG { // Function to sort an square array public static void sortSquares( int [] arr) { int n = arr.Length; // first dived array into part negative and positive int k; for (k = 0; k < n; k++) { if (arr[k] >= 0) break ; } // Now do the same process that we learn // in merge sort to merge to two sorted array // here both two half are sorted and we traverse // first half in reverse meaner because // first half contain negative element int i = k - 1; // Initial index of first half int j = k; // Initial index of second half int ind = 0; // Initial index of temp array int [] temp = new int [n]; while (i >= 0 && j < n) { if (arr[i] * arr[i] < arr[j] * arr[j]) { temp[ind] = arr[i] * arr[i]; i--; } else { temp[ind] = arr[j] * arr[j]; j++; } ind++; } while (i >= 0) { temp[ind++] = arr[i] * arr[i]; i--; } while (j < n) { temp[ind++] = arr[j] * arr[j]; j++; } // copy 'temp' array into original array for ( int x = 0; x < n; x++) arr[x] = temp[x]; } // Driver code public static void Main(String[] args) { int [] arr = { -6, -3, -1, 2, 4, 5 }; int n = arr.Length; Console.WriteLine( "Before sort " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); sortSquares(arr); Console.WriteLine( "" ); Console.WriteLine( "After Sort " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by 29AjayKumar |
Output
Before sort -6 -3 -1 2 4 5 After Sort 1 4 9 16 25 36
Time complexity: O(n)
space complexity: O(n)
Method 3 –
Another efficient solution is based on the two-pointer method as the array is already sorted we can compare the first and last element to check which is bigger and proceed with the result.
Algorithm –
- Initialize left=0 and right=n-1
- if abs(left) >= abs(right) then store square(arr[left])
at the end of result array and increment left pointer - else store square(arr[right]) in the result array and decrement right pointer
- decrement index of result array
C++
// CPP code for the above approach #include <bits/stdc++.h> using namespace std; // Function to sort an square array void sortSquares(vector< int >& arr, int n) { int left = 0, right = n - 1; int result[n]; // Iterate from n - 1 to 0 for ( int index = n - 1; index >= 0; index--) { // Check if abs(arr[left]) is greater // than arr[right] if ( abs (arr[left]) > arr[right]) { result[index] = arr[left] * arr[left]; left++; } else { result[index] = arr[right] * arr[right]; right--; } } for ( int i = 0; i < n; i++) arr[i] = result[i]; } // Driver Code int main() { vector< int > arr; arr.push_back(-6); arr.push_back(-3); arr.push_back(-1); arr.push_back(2); arr.push_back(4); arr.push_back(5); int n = 6; cout << "Before sort " << endl; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; sortSquares(arr, n); cout << endl; cout << "After Sort " << endl; for ( int i = 0; i < n; i++) cout << arr[i] << " " ; return 0; } // this code is contributed by Manu Pathria |
Java
// Java program to Sort square of // the numbers of the array import java.util.*; import java.io.*; class GFG{ // Function to sort an square array public static void sortSquares( int arr[]) { int n = arr.length, left = 0 , right = n - 1 ; int result[] = new int [n]; for ( int index = n - 1 ; index >= 0 ; index--) { if (Math.abs(arr[left]) > arr[right]) { result[index] = arr[left] * arr[left]; left++; } else { result[index] = arr[right] * arr[right]; right--; } } for ( int i = 0 ; i < n; i++) arr[i] = result[i]; } // Driver code public static void main(String[] args) { int arr[] = { - 6 , - 3 , - 1 , 2 , 4 , 5 }; int n = arr.length; System.out.println( "Before sort " ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); sortSquares(arr); System.out.println( "" ); System.out.println( "After Sort " ); for ( int i = 0 ; i < n; i++) System.out.print(arr[i] + " " ); } } // This code is contributed by jinalparmar2382 |
Python3
# Python3 program to Sort square of the numbers of the array # function to sort array after doing squares of elements def sortSquares(arr, n): left, right = 0 , n - 1 index = n - 1 result = [ 0 for x in arr] while index > = 0 : if abs (arr[left]) > = abs (arr[right]): result[index] = arr[left] * arr[left] left + = 1 else : result[index] = arr[right] * arr[right] right - = 1 index - = 1 for i in range (n): arr[i] = result[i] # Driver code arr = [ - 6 , - 3 , - 1 , 2 , 4 , 5 ] n = len (arr) print ( "Before sort " ) for i in range (n): print (arr[i], end = " " ) sortSquares(arr, n) print ( "\nAfter Sort " ) for i in range (n): print (arr[i], end = " " ) |
C#
// C# program to Sort square of // the numbers of the array using System; class GFG{ // Function to sort an square array public static void sortSquares( int [] arr) { int n = arr.Length, left = 0, right = n - 1; int []result = new int [n]; for ( int index = n - 1; index >= 0; index--) { if (Math.Abs(arr[left]) > arr[right]) { result[index] = arr[left] * arr[left]; left++; } else { result[index] = arr[right] * arr[right]; right--; } } for ( int i = 0; i < n; i++) arr[i] = result[i]; } // Driver code public static void Main( string [] args) { int []arr = {-6, -3, -1, 2, 4, 5}; int n = arr.Length; Console.WriteLine( "Before sort " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); sortSquares(arr); Console.WriteLine( "" ); Console.WriteLine( "After Sort " ); for ( int i = 0; i < n; i++) Console.Write(arr[i] + " " ); } } // This code is contributed by Chitranayal |
Output
Before sort -6 -3 -1 2 4 5 After Sort 1 4 9 16 25 36
Time complexity: O(n)
Auxiliary Space: O(n)
This article is contributed by Nishant singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.