# Sort array after converting elements to their squares

Given a array of both positive and negative integers ‘arr[]’ which are sorted. Task is to sort square of the numbers of the Array.
Examples:

```Input  : arr[] =  {-6, -3, -1, 2, 4, 5}
Output : 1, 4, 9, 16, 25, 36

Input  : arr[] = {-5, -4, -2, 0, 1}
Output : 0, 1, 4, 16, 25
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Simple solution is to first convert each array elements into its square and than apply any “O(nlogn)” sorting algorithm to sort the array elements.

Below is the implementation of above idea

## C++

 `// C++ program to Sort square of the numbers ` `// of the array ` `#include ` `using` `namespace` `std; ` ` `  `// Function to sort an square array ` `void` `sortSquares(``int` `arr[], ``int` `n) ` `{ ` `    ``// First convert each array elements ` `    ``// into its square ` `    ``for` `(``int` `i = 0 ; i < n ; i++) ` `        ``arr[i] = arr[i] * arr[i]; ` ` `  `    ``// Sort an array using "sort STL function " ` `    ``sort(arr, arr+n); ` `} ` ` `  `// Driver program to test above function ` `int` `main() ` `{ ` `    ``int` `arr[] = { -6 , -3 , -1 , 2 , 4 , 5 }; ` `    ``int` `n = ``sizeof``(arr)/``sizeof``(arr); ` ` `  `    ``cout << ``"Before sort "` `<< endl; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << arr[i] << ``" "` `; ` `    ``sortSquares(arr, n); ` ` `  `    ``cout << ``"\nAfter Sort "` `<< endl; ` `    ``for` `(``int` `i = 0 ; i < n ; i++) ` `        ``cout << arr[i] << ``" "` `; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to Sort square of the numbers ` `// of the array ` `import` `java.util.*; ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `   ``// Function to sort an square array ` `    ``public` `static` `void` `sortSquares(``int` `arr[]) ` `    ``{ ` `        ``int` `n = arr.length; ` `         `  `        ``// First convert each array elements ` `        ``// into its square ` `        ``for` `(``int` `i = ``0` `; i < n ; i++) ` `            ``arr[i] = arr[i] * arr[i]; ` `  `  `        ``// Sort an array using "inbuild sort function" ` `        ``// in Arrays class. ` `        ``Arrays.sort(arr); ` `    ``} ` `     `  `    ``// Driver program to test above function ` `    ``public` `static` `void` `main (String[] args) ` `    ``{ ` `        ``int` `arr[] = { -``6` `, -``3` `, -``1` `, ``2` `, ``4` `, ``5` `}; ` `        ``int` `n = arr.length; ` `     `  `        ``System.out.println(``"Before sort "``); ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``System.out.print(arr[i] + ``" "``); ` `         `  `        ``sortSquares(arr); ` `        ``System.out.println(``""``); ` `        ``System.out.println(``"After Sort "``); ` `        ``for` `(``int` `i = ``0` `; i < n ; i++) ` `            ``System.out.print(arr[i] + ``" "``); ` ` `  `    ``} ` `} `

## Python3

 `# Python program to Sort square ` `# of the numbers of the array ` ` `  `# Function to sort an square array ` `def` `sortSquare(arr, n): ` ` `  `    ``# First convert each array ` `    ``# elements into its square ` `    ``for` `i ``in` `range``(n): ` `        ``arr[i]``=` `arr[i] ``*` `arr[i] ` `    ``arr.sort() ` ` `  `# Driver code ` `arr ``=` `[``-``6``, ``-``3``, ``-``1``, ``2``, ``4``, ``5``] ` `n ``=` `len``(arr) ` ` `  `print``(``"Before sort"``) ` `for` `i ``in` `range``(n): ` `    ``print``(arr[i], end``=` `" "``) ` ` `  `print``(``"\n"``) ` ` `  `sortSquare(arr, n) ` ` `  `print``(``"After sort"``) ` `for` `i ``in` `range``(n): ` `    ``print``(arr[i], end ``=` `" "``) ` ` `  `# This code is contributed by ` `# Shrikant13 `

## C#

 `// C# program to Sort square  ` `// of the numbers of the array ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `     `  `    ``// Function to sort  ` `    ``// an square array ` `    ``public` `static` `void` `sortSquares(``int` `[]arr) ` `    ``{ ` `        ``int` `n = arr.Length; ` `         `  `        ``// First convert each array  ` `        ``// elements into its square ` `        ``for` `(``int` `i = 0 ; i < n ; i++) ` `            ``arr[i] = arr[i] * arr[i]; ` ` `  `        ``// Sort an array using  ` `        ``// "inbuild sort function" ` `        ``// in Arrays class. ` `        ``Array.Sort(arr); ` `    ``} ` `     `  `    ``// Driver Code ` `    ``public` `static` `void` `Main () ` `    ``{ ` `        ``int` `[]arr = {-6, -3, -1, ` `                      ``2, 4, 5 }; ` `        ``int` `n = arr.Length; ` `     `  `        ``Console.WriteLine(``"Before sort "``); ` `        ``for` `(``int` `i = 0; i < n; i++) ` `            ``Console.Write(arr[i] + ``" "``); ` `         `  `        ``sortSquares(arr); ` `        ``Console.WriteLine(``""``); ` `        ``Console.WriteLine(``"After Sort "``); ` `         `  `        ``for` `(``int` `i = 0 ; i < n ; i++) ` `        ``Console.Write(arr[i] + ``" "``); ` ` `  `    ``} ` `} ` ` `  `// This code is contributed by anuj_67. `

Output:

```Before sort
-6 -3 -1 2 4 5
After Sort
1 4 9 16 25 36
```

Time complexity: O(n log n)

Efficient solution is based on the fact that given array is already sorted. We do following two steps.

1. Divide the array into two part “Negative and positive “.
2. Use merge function to merge two sorted arrays into a single sorted array.

Below is the implementation of above idea.

## C++

 `// C++ program to Sort square of the numbers of the array ` `#include ` `using` `namespace` `std; ` ` `  `// function to sort array after doing squares of elements ` `void` `sortSquares(``int` `arr[], ``int` `n) ` `{ ` `    ``// first dived array into part negative and positive ` `    ``int` `K = 0; ` `    ``for` `(K = 0 ; K < n; K++) ` `        ``if` `(arr[K] >= 0 ) ` `            ``break``; ` ` `  `    ``// Now do the same process that we learn ` `    ``// in merge sort to merge to two sorted array ` `    ``// here both two half are sorted and we traverse ` `    ``// first half in reverse meaner because ` `    ``// first half contain negative element ` `    ``int` `i = K-1; ``// Initial index of first half ` `    ``int` `j = K; ``// Initial index of second half ` `    ``int` `ind = 0; ``// Initial index of temp array ` ` `  `    ``// store sorted array ` `    ``int` `temp[n]; ` `    ``while` `(i >= 0 && j < n) ` `    ``{ ` `        ``if` `(arr[i] * arr[i] < arr[j] * arr[j]) ` `        ``{ ` `            ``temp[ind] = arr[i] * arr[i]; ` `            ``i--; ` `        ``} ` `        ``else` `        ``{ ` `            ``temp[ind] = arr[j] * arr[j]; ` `            ``j++; ` `        ``} ` `        ``ind++; ` `    ``} ` ` `  `    ``/* Copy the remaining elements of first half */` `    ``while` `(i >= 0) ` `    ``{ ` `        ``temp[ind] = arr[i] * arr[i]; ` `        ``i--; ` `        ``ind++; ` `    ``} ` ` `  `    ``/* Copy the remaining elements of second half */` `    ``while` `(j < n) ` `    ``{ ` `        ``temp[ind] = arr[j] * arr[j]; ` `        ``j++; ` `        ``ind++; ` `    ``} ` ` `  `    ``// copy 'temp' array into original array ` `    ``for` `(``int` `i = 0 ; i < n; i++) ` `        ``arr[i] = temp[i]; ` `} ` ` `  `// Driver program to test above function ` `int` `main() ` `{ ` `    ``int` `arr[] = { -6 , -3 , -1 , 2 , 4 , 5 }; ` `    ``int` `n = ``sizeof``(arr)/``sizeof``(arr); ` ` `  `    ``cout << ``"Before sort "` `<< endl; ` `    ``for` `(``int` `i = 0; i < n; i++) ` `        ``cout << arr[i] << ``" "` `; ` `    ``sortSquares(arr, n); ` ` `  `    ``cout << ``"\nAfter Sort "` `<< endl; ` `    ``for` `(``int` `i = 0 ; i < n ; i++) ` `        ``cout << arr[i] << ``" "` `; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to Sort square of the numbers ` `// of the array ` `import` `java.util.*; ` `import` `java.io.*; ` ` `  `class` `GFG  ` `{ ` `   ``// Function to sort an square array ` `    ``public` `static` `void` `sortSquares(``int` `arr[]) ` `    ``{ ` `        ``int` `n = arr.length; ` `       ``// first dived array into part negative and positive ` `       ``int` `k; ` `       ``for``(k = ``0``; k < n; k++) ` `       ``{ ` `           ``if``(arr[k] >= ``0``) ` `             ``break``; ` `       ``} ` `         `  `        ``// Now do the same process that we learn ` `        ``// in merge sort to merge to two sorted array ` `        ``// here both two half are sorted and we traverse ` `        ``// first half in reverse meaner because ` `        ``// first half contain negative element ` `        ``int` `i = k-``1``; ``// Initial index of first half ` `        ``int` `j = k; ``// Initial index of second half ` `        ``int` `ind = ``0``; ``// Initial index of temp array ` `         `  `        ``int``[] temp = ``new` `int``[n]; ` `        ``while``(i >= ``0` `&& j < n)  ` `        ``{ ` `            ``if``(arr[i] * arr[i] < arr[j] * arr[j]) ` `            ``{ ` `                ``temp[ind] = arr[i] * arr[i]; ` `                ``i--; ` `            ``} ` `            ``else``{ ` `                 `  `                ``temp[ind] = arr[j] * arr[j]; ` `                ``j++; ` `                 `  `            ``} ` `            ``ind++; ` `        ``} ` `         `  `        ``while``(i >= ``0``) ` `        ``{ ` `            ``temp[ind++] = arr[i] * arr[i]; ` `            ``i--; ` `        ``} ` `        ``while``(j < n) ` `        ``{ ` `            ``temp[ind++] = arr[j] * arr[j]; ` `            ``j++; ` `        ``} ` `         `  `       ``// copy 'temp' array into original array ` `        ``for` `(``int` `x = ``0` `; x < n; x++) ` `            ``arr[x] = temp[x]; ` `    ``} ` `     `  `    ``// Driver program to test above function ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{ ` `        ``int` `arr[] = { -``6` `, -``3` `, -``1` `, ``2` `, ``4` `, ``5` `}; ` `        ``int` `n = arr.length; ` `     `  `        ``System.out.println(``"Before sort "``); ` `        ``for` `(``int` `i = ``0``; i < n; i++) ` `            ``System.out.print(arr[i] + ``" "``); ` `         `  `        ``sortSquares(arr); ` `        ``System.out.println(``""``); ` `        ``System.out.println(``"After Sort "``); ` `        ``for` `(``int` `i = ``0` `; i < n ; i++) ` `            ``System.out.print(arr[i] + ``" "``); ` ` `  `    ``} ` `} `

## C#

 `// C# program to Sort square of the numbers  ` `// of the array  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` `     `  `    ``// Function to sort an square array  ` `    ``public` `static` `void` `sortSquares(``int` `[]arr)  ` `    ``{  ` `        ``int` `n = arr.Length;  ` `         `  `        ``// first dived array into part negative and positive  ` `        ``int` `k;  ` `        ``for``(k = 0; k < n; k++)  ` `        ``{  ` `            ``if``(arr[k] >= 0)  ` `                ``break``;  ` `        ``}  ` `         `  `        ``// Now do the same process that we learn  ` `        ``// in merge sort to merge to two sorted array  ` `        ``// here both two half are sorted and we traverse  ` `        ``// first half in reverse meaner because  ` `        ``// first half contain negative element  ` `        ``int` `i = k-1; ``// Initial index of first half  ` `        ``int` `j = k; ``// Initial index of second half  ` `        ``int` `ind = 0; ``// Initial index of temp array  ` `         `  `        ``int``[] temp = ``new` `int``[n];  ` `        ``while``(i >= 0 && j < n)  ` `        ``{  ` `            ``if``(arr[i] * arr[i] < arr[j] * arr[j])  ` `            ``{  ` `                ``temp[ind] = arr[i] * arr[i];  ` `                ``i--;  ` `            ``}  ` `            ``else` `            ``{  ` `                ``temp[ind] = arr[j] * arr[j];  ` `                ``j++;  ` `            ``}  ` `            ``ind++;  ` `        ``}  ` `         `  `        ``while``(i >= 0)  ` `        ``{  ` `            ``temp[ind++] = arr[i] * arr[i];  ` `            ``i--;  ` `        ``}  ` `        ``while``(j < n)  ` `        ``{  ` `            ``temp[ind++] = arr[j] * arr[j];  ` `            ``j++;  ` `        ``}  ` `         `  `        ``// copy 'temp' array into original array  ` `        ``for` `(``int` `x = 0 ; x < n; x++)  ` `            ``arr[x] = temp[x];  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main(String []args)  ` `    ``{  ` `        ``int` `[]arr = { -6 , -3 , -1 , 2 , 4 , 5 };  ` `        ``int` `n = arr.Length;  ` `     `  `        ``Console.WriteLine(``"Before sort "``);  ` `        ``for` `(``int` `i = 0; i < n; i++)  ` `            ``Console.Write(arr[i] + ``" "``);  ` `         `  `        ``sortSquares(arr);  ` `        ``Console.WriteLine(``""``);  ` `        ``Console.WriteLine(``"After Sort "``);  ` `        ``for` `(``int` `i = 0 ; i < n ; i++)  ` `            ``Console.Write(arr[i] + ``" "``);  ` `    ``}  ` `}  ` ` `  `// This code is contributed by 29AjayKumar `

Output

```Before sort
-6 -3 -1 2 4 5
After Sort
1 4 9 16 25 36
```

Time complexity: O(n)
space complexity: O(n)

This article is contributed by Nishant singh. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up

Improved By : shrikanth13, vt_m, 29AjayKumar

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.